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Chaotic Communications in the Presence of Noise

Dr. Richard H. Sherman and Jeff Gullicksen
Loral Western Development Labs

Abstract

An innovative communication system has been developed. This system has the potential
for improved secure communication for covert operations. By modulating data on the cha-
otic signal used to synchronize two nonlinear systems, we have created a Low Probability
of Intercept (LPI) communications system. We derived the equations which govern the
system. We made models of the system and performed numerical simulations to test these
models. The theoretical and numerical studies of this system have been validated by ex-
periment5,21 25.

A recent design improvement has led to a system that synchronizes at 0 db Signal-to-
Noise ratio. This development holds the promise of a Low Probability of Detection (LPD)
system.

1.0 Introduction

This work has applied the fact that non-linear systems exhibiting chaotic behavior can be
related to the investigation of a secure communications system. Chaos, with its noise-like
properties, is useful as a mechanism for secure transmission of information. The dynamic
behavior can be utilized to hide data and facilitate demodulation.

The general goal of this research is to apply results in nonlinear systems theory,
particularly dynamical systems theory, to problems encountered in the design and analysis
of communications systems. Specific paper objectives are to:

1. Demonstrate a practical Low Probability of Detection (LPD) communication system

2. Study the effects of noise, interference and distortion on chaotic communications
systems

3. Obtain an understanding of the global parameter space of chaotic communication
systems

A recent paper22 showed how two near-identical systems linked by a chaotic signal can
synchronize with each other. Using two coupled loops, one stable and one unstable, as a
transmitter of a chaotic signal, we showed that a third loop, nearly idc,|tical to the stable
transmitter loop, can synchronize with that loop in the transmitter. The numerical study
considered sinusoidal oscillators which are closely related to the well studied sine-circle
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map. In an introductory experimental study of synchronized chaos we used a simple
experimental DPLL to confirm our analysis.

In this paper we consider the transmission of data using the synchronous system. The
problem is to design an Low Probability of Detection LPD18 0 chaotic communications
system. The main reasons for using chaos in the communication circuit are the following:

"* the spectrum of the chaotic signals is noise-like,

"* the underlying structure of the chaos is useful in hiding data,

* the parameters of the nonlinear system are useful as a "key"

"* Conventional spread spectrum has a basic "chip" rate that does not exist in the Chaot-

ic Communications System

There are two general methods for using chaos in a communications system:

1. The chaotic generator is left unchanged by data during operation.

2. The chaotic generator is changed in some way by data during operation.

In method one, the information signal is added outside of the chaotic generator. An
example of a system based on method one is signal masking. In signal masking a low
power information signal is added into the spectral envelope of a chaotic signal. The
higher power chaotic signal then literally masks the information signal.

In method two, the information signal is added inside the chaotic generator. The data is
intrinsically contained within the chaos. We have selected method two because it yields
the best LPD communications system utilizing nonlinear dynamical systems theory.

Example data modulation techniques for method two are as follows:

1. The chaotic system parameters can be changed between two discrete states.

2. The chaotic signal can be multiplied by a binary signal.

3. The chaotic signal can be converted to two discrete states which is then multiplied by
the binary signal. The mixed signal is then converted back to an analog signal.

Not all of these methods hide the data. The last alternative offers the best protection from
interception. This is because the binary data is mixed in an intricate way into the chaos
itself.

1.1 Comparison to Other Research

In this section we will discuss related research and how our work differs. For the sake of
brevity we review only a small sampling of the references in the applicable fields.

Pecora wid Carroll's work 16' 17 is based on the idea that a chaotic system may be
decomposed into two subsystems; nanely a stable subystem and an unstable subsystem. _

The stable subsystem can then be replicated and driven by the unstable subsystem. The
two stable subsystems then have identical outputs after transients have died away. M. de ,,
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Sousa Viera has shown that the Lyaponov exponent for the subsystem is the same as the
Lyaponov exponent of the entire system. This means that the entire system can be studied,
without breaking it up into subsystems.

Pecora and Carroll16 .17 also suggested a data communications system which is inherently
noise sensitive. The information signal is outside of the chaotic generator. The information
signal is at one-fifth the power of the chaos when sent over the channei, and the frequency
spectrum of the chaos envelopes the frequency spectrum of the signal. Although their
schemes work with little or no noise it would be extremely difficult to make them work
with even 20 dB SNR.

A. Oppenhiem 15 is pursuing the use of chaotic signals for masking information-bearing
signals and as modulating waveforms in spread spectrum systems. The synchronized cha-
os uses the same structure as Pecora and Carroll. The transmitter is a Lorenz system and
the receiver is a subset of this system.

Both of these approaches differ from our approach of selecting the stable and unstable
parts of the chaotic circuit. We simply take two circuits and connect them together. One of
the circuits operates unstably and the other is stable. We then just replicate the stable
circuit to act as a receiver. Our method allows one to add more unstable components to
increase the dimensionality of the chaos whereas the other research approaches do not.
Filters, limiters and data modulation circuits can be added to the basic chaotic circuit to
provide robust performance in low SNR environments. Our modulation technique is
totally different. We make slight changes to the chaotic circuit itself in such a way as to
not give away the fact that we are modulating data. We then only have to compare for
degrees of synchronization between two signals. In this way we can tolerate much more
noise.

2.0 Communications System Design

Our focus is on the areas of LPD communications systems, the communications applica-
tions of chaotic phenomena and synchronization. In the rest of this section we describe
problems that arise in these applications.

2.1 Problems in designing Communication systems using Chaotic
phenomena
Several problems have been found in designing chaotic communication systems. Some of

these problems are as follows:

1. Adding noise to a synchronized chaotic system can cause loss of synchronization.

2. Global system behavior is impacted by the addition of filters, VCOs with sin wave out-
puts, VCOs with triangular wave outputs and other components changes 5,2 1-25 . This
implies that communications engineering must consider the implications of nonlinear
dynamics on each system change.



3. How should the communications system transmit two parts of the chaotic signal with-
out distortion?

4. How does the system design compensate for amplitude variations caused by the chan-
nel? Adding a limiter can change a chaotic system into a system that doesn't exhibit
any chaotic behavior, i.e., multiply periodic. This implies that the system can lose its
"noise-like" behavior desired for LPD.

5. How does the system design modulate data in a way that is hard for the interceptor to-
detect.

The first two problems are the general LPD problems. Problems 3-5 Rre specific problems
which we solve in the next sections.

2.2 Distortion free multiplexing

cos SN

FIGURE 1. The original secure communications system

The first problem solved is how to transmit both the I and Q chaotic signals. The two
signals, illustrated in Figure 1, were needed by the receiver to tell when the system is
synchronized. Quadrature multiplexers and demultiplexers were used to transmit the two
signals. This multiplexing and the channel required the use of low pass filters. The low
pass filters, LPF2 and LPF3 caused both amplitude and phase distortions.

Originally, high-order Finite Impulse Response (FIR) filters and an Automatic Gain
Control (AGC) mechanism were added in an attempt to provide multiplexing free of
distortion. The FIR filter minimized phase distortion. The AGC compensated for
amplitude variation. The result was that even small distortions in the filter degraded
system performance.
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Filters were then added in the appropriate locations and the feedback loop altered in the
design such that equal distortion effects occur in the transmitter and in the receiver. This
system is illustrated in Figure 2. The two low pass filters LPF2 and LPF3 were necessary
to eliminate the double frequency component of the demultiplexed signal. The filter LPF1
was added to precompensate for the distortion caused by LPF2. LPF4 was added to com-
pensate for the distortion caused by LPF3. Now the use of IIR filters was possible because
the distortion effects were compensated. The system was synchronized because the input
to PLL3 was the same as the input to PLL1.

[ P I •• COS -• )g SIN

FIGURE 2. The secure communications system with filter in the signal generator feedback path.

2.2.1 Removing amplitude variation without eliminating chaos

The second problem was amplitude variations caused by the channel. The system of Fig-
ure 2 was still sensitive to amplitude variation of the received signal. A static amplitude
error between the input to PLL3 and the input to PLL1 caused the output signals of these
two phase-locked loops to be out of synchronization.

The problem of amplitude variation was solved by inserting a hard limiter and VCO in
front of PLL3 in the receiver. The hard limiter eliminated the dependence on amplitude at
the input of the receiver completely. The square wave output of the limiter was converted
into a sine wave by use of a VCO. These components allowed the transmitter to still pro-
duce chaos.

The limiter outputs two voltages: V1 when the input was less than zero, and V2 when the
input was greater than zero. We now have an eight dimensional parameter space. The pa-
rameters are the center frequencies, loop gain, and offset voltages of PLL 1 and 2, and the
limiter output voltages V1 and V2 . Each one of these parameters can be used as part of a
"key".

The improved system is shown in Figure 3 and 4. The receiver has matching elements to
the transmitter. The PLLs 1 and 2 are identical, and the LPFs 1 and 2, 3 and 4 are identical.
The hard limiters and VCO's are identical in the transmitter and the receiver. Also the
transmitted reference and information signal go throug" the same elements in the same or-
der.
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FIGURE 3 The improved Transmitter with limiters to remove amplitude sensitivity.

Transmitted
Reference

Information
Sigpal

L4ýý'Digital
Datait

FIGURE 4. The improved Receiver Synchronization Circuit
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The nonlinear dynamics of this new system was examined next. There was no guarantee
that the new system would operate chaotically and synchronize. In fact it was found in our
previous studies of analog PLL's1 9 , that inserting hard limiters into a chaotic system had a
tendency to eliminate the chaos. Analyzing the system with nonlinear dynamics tools
showed that the system was still chaotic. The results are illustrated as follows: signal
spectrum, Figure 5, the bifurcation diagram, Figure 6, the global synchronization, Figure
7, and the synchronization between transmitted and recovered signals, Figures 8 and 9.

The signal spectrum at the output of PLL2 is illustrated in Figure 5. The power was
broadband and noise-like. This was an indication that the signal was chaotic.

FIGURE 5 Spectrum of PLL2 output.

10000.00 I I
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Figure 6 is a bifurcation diagram with the parameter b2 (offset voltage of PLL2) plotted
against the output voltage of PLL2 at the sampling time of PLL 1. The other parameters are
constant at b, = 0.4, V1 = 2.2, and V2 = 2.3. For each b2 value, 400 voltages are plotted.
The bifurcation diagram indicated that the system could operate in a chaotic mode.
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FIGURE 6 Bifurcation Diagram for improved secure communications system.
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A global synchronization plot, illustrated in Figure 7, is for parameter values of b, = 0.4,
b2 = 0.95, and for various values of the limiter voltages V, and V2. It is seen from Figures
5 that the system was operating in a chaotic mode and yet the outputs of the LPF3 and
LPF4 were in synchronization when V1 = 2.2 and V3 = 2.3.
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FIGURE 7 Global Synchronization Plot
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FIGURE 8 Synchronization with 20dB SNR.
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3.0 Conclusions

We have solved three major problems dealing with making a realistic communications
system using chaos. There are several more that we know about.

Our single largest problem is how to reduce the Signal-to-Noise ratio. A related problem is
determining whether the transmitted signal can be detected by non-standard means. These
problems are related because there solution resides in the ability to get a clear look at the
transmitted signal. The solutions here might come from Empirical Chaos8"', Higher Or-
der Spectra 14 and Wavelets4 .

Another problem is that a bit synchronizer and bit detector need to be designed. This is
challenging because the modulation techniques used make the data rate chaotic. Standard
communication engineering techniques, however, should solve this problem.

The problems of multipath and cochannel interference must be addressed. These problems
motivated are solution to the amplitude variation issue. Additional sensitivity studies are
needed.
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Non-linear Methods For Communication

1.0 Executive Summary

This is the first annual report on Non-linear Methods For Communication. During the past
year we have performed experiments, run simulations, and done analysis on several differ-
ent aspects of secure and high speed communications systems using the methods of non-
linear dynamics.

In the area of secure communications we have investigated system using chaotic circuits
for the creation of low probability of intercept (LPI) communications. The system we con-
sidered is the synchronization of a receiver, composed of one or more digital phase lock
loops (DPLLs), to a transmitter, also composed of DPLLs, which is transmitting a chaotic
signal. We have explored the possibility of digital data transmission with such a system.
The results hold great promise for the creation of a tactical LPI communications system.
We have also explored an alternative method of generating pseudo random noise (PRN),
using the chaotic behavior of a system of DPLLs, for use in existing spread spectrum sys-
tems. The work to date has shown the properties of a circuit operating in the chaotic mode
is suitable for the creation of PRN.
In the area of high speed communications we have simulated the behavior of a second order
analogue phase lock loop containing a hard limiter. The results of the simulation have val-
idated the linear analysis usually done for such systems and has explored parameter regions
where the system behaves chaotically.

In the area of synchronization of networks we have begun the study the synchronization of
many coupled DPLL's to a common frequency. Such devices may be used as synchroniza-
tion elements in networks of clocks, power generators, microwave systems, satellite sys-
tems, and computer networks.

1.1 Purpose of the effort

The general goal of the research is to develop more effective methods for predicting com-
munication systems performance through the application of methods of non-linear dynam-
ics The motivation for this work may be considered to lie in the following areas: Secure
Communications which includes LPI communications for covert applications and new
Milstar waveforms for tactical communications, high speed communications which in-
cludes DARPA High Performance Computing Program, DARPA Strategic Computing
Program, and the Federal High Performance Computing and Communications Program,
and finally network synchronization which involves Code Division Multiple Access
(CDMA) requirements for system synchronization and timing and LightSat Systems
which require self-synchronization in tactical applications.

This goal is embodied in a two pronged effort:
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1. The study of synchronization in systems useful for communications purposes using the
methods of non-linear dynamics

2. Transfer of the knowledge of the techniques of non-linear dynamics to engineering
community studying communications systems.

1.2 Organization of the report
This report is organized as follows: Section two describes the organization of the research,
including the names of the people involved in performing it, and supplies a summary of the
work performed to date including technical results, conclusions, and the implications for
further research during the coming year. Section three contains reports of the research writ-
ten by the individual researchers. These reports are detailed and technical in nature.

2.0 Organization of the research

The research group on non-linear methods for communication is divided into two sub-
groups. One sub group is at the University of California at Berkeley (UCB) and the other
is at LORAL- WDL. Each sub group brings its own special virtues to the project.

Loral understands practical communication systems but is new to non-linear dynamics.
Thus it provides guidance on communications issues and concerns itself with problems di-
rectly related to realistic communication engineering questions. The sub group at U.C. pro-
vides the expertise on non linear dynamics and develops the more theoretical aspects of the
study. The two sub groups also have different experimental capabilities. The resources of
both groups are complementary.

The members of each subgroup pursue different aspects of the research. In order to insure
that there is sufficient technical guidance and to decide on new directions in the research
the two sub groups have formal meetings every four weeks. In addition the E mail facilities
available to the group members are exploited to exchange technical information. Table 1
contains the names of the members of the research group, which subgroup they are a mem-
ber of he role they played in the performance of the research, and the section which contains
a report of their work.

2.1 Summary of the research projects
Figure 1 is a graphical representation of the tasks performed during the contract year. The
efforts may be divided up into four areas. Secure communications, in turn subdivided into
standard and non standard methods, high speed communications, and network synchroni-
zation.

2.1.1 Secure Communications
Under the heading of secure communications work was performed in two areas; what may
be termed non standard methods and Spread Spectrum.
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TABLE 1. Personnel Of Research Group And Their Responsibilities

Name Group Responsibility Section

R. Sherman, LORAL guidance on communication issues

Prof. A. J. Lichtenberg UCB guidance on non linear dynamics

Prof. M. A. Lieberman UCB guidance on non linear dynamics

M. de Sousa Vieira UCB analysis and numerical simulation of 3.1,3.2 & 3.9

synchronizing systems

W. Wouchoba UCB derivation of mapping eqns 3.3

J. Gullicksen LORAL experimental work confirming synch-

ronization and simulation of realistic 3.5

communication system

P. Khoury UCB experimental work confirming bi- 3.6

furcation diagram

Prof. J.Y. Huang LORAL simulation of data transfer 3.4

simulation of PN generation 3.7

M. Steinberg LORAL simulation of analogue PLL 2.0,3.8

HI GH NETWORK
COMM SPEED SYNC

COMM

NON 
STANDA 

S 
EAD 

M

MET HO1D SP RUM

ON LINEA PSEUDO ANALOG DIGITAL
SYSTEM RNOIM PLL COUPLED

NOISE LOSCS
GENERATION

analysis of simulation of V FM -frequency

coupled DPLLs code generation fuen
experimental using DPLLs studies

study of coupled BPSK suonfig
DPLLS studies

simulation of data
transfer with coupled

DPLLs

FIGURE 1. Results of First Years Tasks
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A. Non Standard Methods

The work on non standard methods for secure communications involved the investigation
of non-linear systems which used DPLLs (see figure 2 for a block diagram of a DPLL). The
efforts involved analysis, experiment and numerical simulations. We showed that the con-
cept of synchronized chaos, introduced by Pecora and Carroll, can be applied to coupled
DPLLs.

In particular we applied the idea of-chaotic synchronization to a system which consisted of
three or more coupled digital phase locked loops. We were able to show that the dynamics
of such a system is far more complicated than that of a single loop, which is governed by a
one-dimensional circle map. In the case of two coupled loops, we observed that the dynam-
ics is governed by explicit mapping equations only for certain regions of the parameter
space. In the regions for which mapping equations can be derived, we found the universal-
ity class of the coupled loops.

""-E VFO

SHV

FIGURE 2. Schematic diagram of a DPLL

Using non linear analysis techniques such as the generation of surfaces of section (i.e.,
Poincaire Maps) as a functions of system parameters, bifurcation diagrams, and calculation
of Liapunov exponentials we analyzed a model communications system which was made
up of DPLLs. The chaotic carrier was generated in a subsystem of two or more digital phase
locked loops, where one subset of loops is stable and the other is unstable, i.e., their Li-
apunov exponents are negative and positive, respectively. The receiver consisted of subsets
of stable loops only. Both a modulated chaotic carrier and a chaotic synchronization signal
can be transmitted. We verified numerically that the receiver does synchronize with the
transmitter if the stable subsets of loops in the transmitter and receiver are identical. We
studied the phase space where synchronization occurs, and quantified the degree of syn-
chronization using the concept of mutual information (This work is described in detail in
sections 3.1 and 3.2).

Further analysis of the problem led to a derivation of mapping equations for the coupled
DPLL system. We showed that these equations, and hence the dynamics of the coupled
DPLLs, are generalizations of the dynamics of a bouncing ball on a large periodically-vary-
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ing table, a system which has been studied by several authors. We showed that no fixed
points exist in this map, but that period-two points do exist. (See section 3.3 for details)

The results of the numerical analysis were verified by experiments. One experiment dem-
onstrated the synchronization of the "receiver" and "transmitter" in the model communi-
cation system. Even though no particular care was taken to assure that all parts in the
receiver and transmitter were matched the experiment confirmed the values of the parame-
ters for which the synchronization occurred. (see section 3.5) The other experiment traced
the bifurcation behavior of the system and provided an experimental verification of the nu-
merically produced bifurcation diagram (see section 3.6).

In order to further explore the possibilities of using the synchronization to a chaotic signal
for communications purposes two more numerical simulations were performed. The first
simulation examined a transmitter made up of two coupled DPLLs and a receiver made up
of two coupled DPLLs (see figure 3 "Parameter Matching Circuit"). The second DPLL in
the transmitter has its coupling coefficient set very high so that the loop has a positive Ly-
apunov exponent; the coupling coefficient for the first loop in the transmitter is made to
take on two different values, one value for the binary digit of 1-bit and another value for 0-
bit (both values of the coupling coefficient are chosen so that the loop has a negative Ly-
apunov exponent). The output of the voltage controlled oscillator of the second DPLL is
transmitted to the receiver where it acts as the inputs to both DPLLs. The difference be-
tween the two DPLLs making up the receiver is in their coupling coefficients. The cou-
pling coefficient for one of the DPLLs matches that for 1-bit used for the first DPLL in the
transmitter and that for the other DPLL matches that for 0-bit. Hence, when a I-bit is
transmitted, the output of the first DPLL in the transmitter will be in phase synchroniza-
tion with one of the DPLLs in the receiver and when a 0-bit is transmitted, it will be in
synchronization with the other. The result of the simulation suggest that in order to have a
bit error probability on the order of 10-6 or lower, the input SNR must be much higher than
twenty (20) dB, which is almost one order of magnitude higher than the case of BPSK or
QPSK signalling system. Hence, this digital data transmission system may be considered a
LPI (low-probability of intercept) communication system, but its power efficiency is very
poor.(For details see section 3.4)

The second simulation, which is still underway, involved the creation of the model of a re-
alistic and realizable communications system using the coupled DPLLs. In the system de-
scribed in the previous paragraph the output of first DPLL in the transmitter is not
available at the receiver. Thus the decision variable used at the receiver for the detection of
the binary data, must be based on the received signal (which is the output of the second
DPLL in the transmitter) or certain variables related to the two DPLLs in the receiver. This
decision variable must be such that the 1-bit or 0-bit embedded in the received signal can
be extracted without any ambiguity in the absence of input thermal noise.An alternate pro-
cedure is to have a communication system using chaotic signals as the transmitted sym-
bols. The system consists of two coupled digital phase lock loops (DPLL's) acting as a
transmitter, a modulator, a channel, an additive noise source, a demodulator, and a DPLL
acting as a receiver. (see figure 4 "Transmitted Reference Circuit")
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The coupled transmitter operates in a region such that its output is chaotic. The receiver
then takes in this chaotic signal and synchronizes to it. The results to date indicate that
when the modulator/demodulator were added without doing carrier recovery that synchro-
nization was lost. (The details are to be found in section 3.5).

COUPLED LOOP TRANSMITTER P
------------------------------V1

PL _ Regenerated
. Data Sequence

-----------------------------.....,..7..7.......7................... .7..7..7..7..7.7.. .....'..7..7.7.7.7. .7.7.•.."....o..

Binary Data

Sequence
Thermal

Noise

FIGURE 3. Parameter Matching Circuit. A Digital Communication System Employing Coupled
Digital Phase Lock Loop With The Second Loop Having Positive Lyapunov Exponent

V,

Coupled Loop V2 a Quad.

Transmitter o Modulator 1 Channel

S• Demodulator so Receiver

AWGN

FIGURE 4. TItlmmtted Reference Circuit. Block Diagram of General Communication System Using
Coupled Loop Transmitter
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The results of the analysis, experiments and simulations related above, and described in de-
tail in section 3, suggest that synchronization to chaotic signals may provide one possible
solution to the problem of LPI communications. In order to further explore this idea the
group intends to pursue the following courses of action during the coming contract year.
We will continue the exploration, through simulation, analysis and experimentation, of the
periodic, quasiperiodic and chaotic regimes of DPLLs as well as their transient behavior.
The concept of mutual information to quantify the degree of synchronization between loops
when they are not identical will continue to be used. The studies already underway will be
augmented by the use of symbolic dynamics, fractal dimensions, etc. We also plan to study
chaotic synchronization in more complex systems, since these may be necessary for prac-
tical implementation. One of our priorities will be to work on modulation techniques for the
transmission of information. Further work will be undertaken to find the optimal decision
variable for parameter matching system. Finally to effect the appropriate design of filters
for use in circuits involving chaotic signals we will explore the higher order statistical char-
acteristics of chaotic signals.

B. Spread Spectrum
In spread spectrum systems, the pseudo-noise (PN) codes needed for signal spectrum
spreading are, in general, generated from n-stage shift registers with either linear or non-
linear feedback. It is obvious that the sequence generated by the n-stage shift register with
feedback is periodic whose period can not be longer than 2'- 1. The number of linear logic
functions yielding the maximum period is 22" '/2 when non linear feedback logics are
used. We simulated a circuit consisting of N first order DPLLs connected in a ring config-
uration with one of the DPLLs having a positive Lyapunov exponent. (see figure 5 -in our
case N took on the value of either 2 or 4.) The output of any one of the DPLLs in the circuit
can then be sampled at a rate equal to a small fraction, say 0.1, of the nominal frequency of
the DPLL's, and each of the samples are quantized into a binary digit of I or 0. depending
on the sample being positive or negative, respectively. The binary sequence so generated
has the potential of being truly random with a period which is very long We constructed an
algorithm by which two identical circuits can be brought into synchronization, both for the
clock signals and code phases.

The results of the simulation are that properties of these sequences, including statistics on
0/1 balance, auto-correlation and cross-correlation between sequences meet the require-
ments of pseudo noise generators.(The details of this work are reported in section 3.7)

A larger collection of sequences generated using the system with different number of
DPLL's in the systems and with different coupling coefficients needs to be studied, so as to
be certain that the codes sequences generated by the systems have all the desired properties.
The periods of the generated sequences must be determined either through theoretical in-
vestigation or by simulations, possibly using the techniques of cell to cell mapping. The ef-
fects of using a shorter word length in the arithmetic operations, on the properties of
sequences being studied, also require further investigation.
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DPLLI DPLL2  DPLL3 ...... .. DPLLn_1  DPL

I ~SamplerI

SI1-Bitl
JQuantizerý

Random Binary
Sequence

FIGURE 5. Psevdo-Noise Sequence Generator Employing N Digital Phase Locked Loops (DPLLs)
Connected in Ring Configuration With the n-th DPLL Having Positive Lyapunov Exponent

2.1.2 High Speed Communications
Phase locked loops (PLLs) are useful for phase and frequency, synchronization. An inde-

pendent study at LORAL WDL explored possibilities for high speed data recovery using
an analogue phase lock loop which contained a hard limiter. A linear analysis indicated that
the such a loop showed great promise. However, since the behavior of a phase lock loop
with a hard limiter in it was not well unde stood it was decidced that an analysis of a system
containing a hard limiter should be performed using the methods of non linear dynamics.
The non linear analysis confirmed the results of the linear analysis for FM in the region
where the loop is normally operated. In addition it showed that the hard limiter introduced
chaos in regions of operation of the PLL where there is no chaos when the limiter is not
present. Because of the limiter the behavior of the circuit is independent of wave form, so
that square waves give the same result as the sine waves used in the FM study.The results
for BPSK are only preliminary and indicate that there are regions of the operating parame-
ter ranges which require further investigation (Section 3.8 contains the details of this work).

2.1.3 Network Synchronization
Due to the importance of the synchronization of oscillators in the design of microwave sys-
tems, in electrical power generation, Josephson junction arrays, networks of clocks or com-
puters distributed geographically, etc. preliminary work was begun on the synchronization
to a common frequency of systems made up of many coupled digital phase locked loops
(DPLL's). We studied the transition to the locked state in several different configurations
and when the center frequencies are identical for all loops, and when they differ. A closed
fobim expression was found for the synchronization frequency when the communication be-
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tween DPLLs is bi-directional. (see section 3.9).

We have observed the boundaries between synchronized and chaotic behavior for two or
more coupled DPLLs. We have also shown that populations of non uniformly sampled dig-
ital phase locked loops synchronize with a common frequency over a range of parameters.
We found that the transition to the synchronized state and the parameter range where it is
stable depend on the configuration of the system, with the time to lock impro, Ing with the
number of couplings for a fixed number of coupled devices. The time to lock increases lin-
early with number of coupled devices if the number of devices is small.The time to lock
approaches a constant value for large number of devi, -

As the transition to the locked state and the parameter range where synchronization hold
depend on the configuration of the system, we plan to continue our numerical investigations
of different configurations. We will study such questions as: What is the optimum config-
uration of the system? What are the advantages and disadvantages of DPLL's versus analog
PLL's for network synchronization? We also plan to do an experimental study of the syn-
chronization of DPLL's.
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3.0 Individual Reports

3.1 Nonlinear Dynamics of Self-Synchronizing Systems

3.1.1 INTRODUCTION

A synchronizing system is one that locks the phase of an
output signal (the receiver) to that of an input signal (the
transmitter). Here the signals are represented as

V(t) = Asin(4(t))

where *(t) is the phase. A particular device that accom-
plishes this is a phase locked loop (PLL). Such devices have
proved useful in a variety of communication applications,
including modulation and demodulation, and noise reduction .

A PLL can be either analog or digital (DPLL), both types be-
ing easy to realize and obeying equations that are conve-
nient to analyze 2. In particular, the DPLL's have mapping
representations that allow straightforward numerical inves-
tigation of their nonlinear properties, that is, dynamics
far from the locked state f3,4,5,6!

In the usual synchronization system, the transmitter signal
consists of a single carrier frequency and is represented by
a sinusoidal signal at constant amplitude and phase. A phase
locked loop in the receiver is then used to lock the receiver
phase to that of the transmitter. Recently it has been shown'
that a dynamical system described by three differential
equations, exhibiting chaos, can be used to transmit a sig-
nal to a subsystem also described by those equations in such
a manner that the subsystem is synchronized with the primary
chaotic system. This opens up an interesting new possibility
in that the phase of a receiver can be locked to that of a
transmitter even if the transmitted signal is chaotic, i.e.,
consisting of a continuous spectrum of carrier frequencies.
Such synchronized systems may have applications to the prob-
lem of secure communications, offering a possible alterna-
tive to conventional spread spectrum systems.

A particularly simple DPLL is a first-order ri-- 'inLformly
sampling loop, which, as we shall discuss in r.iaraph
3.1.2, has a circle map representation. If we - , r" two such
DPLL's together, the resulting dynamics can be tar more com-
plicated than that of a single loop because the loops can
switch asynchronously, so that far from the locked state one
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DPLL may change state more than once while the other is not
changing state. Thus, unlike the usual coupled map lattices
8, there is no explicit mapping representation for such cou-
pled devices. In coupled map lattices, the dynamics of all
elements are evolved at the same instant of time according a
given rule, which by definition, is described by mapping
equations.

In the following sections, we describe the behavior of a cou-
pled system consisting of two first-order DPLL's in which
the output of the second loop serves as the input for the
first loop, and vice-versa. For some regions of the parame-
ter space, the usual properties associated with a single
circle map persist, while for other parameters, the overall
dynamics is more complicated. We then show how two coupled
first-order DPLL's can be used to implement a transmitting
system that generates a chaotic carrier signal, and how a
third loop can be used as a receiving system that locks to
the phase of the chaotic carrier. In paragraph 3.1.2 we de-
rive the dynamics of a single loop, showing that the dynamics
can be described by a simple one-dimensional circle map.
Such maps are known to have a rich dynamical behavior 9 , in-
cluding quasiperiodic motion, regions of phase-locking, pe-
riod-doubling to chaos and intermittency. Coupling two such
DPLL's together such that the output of each loop is the in-
put for the other loop, we obtain the algorithm for iterating
the coupled system and obtain explicit mapping equations
valid for some regimes. In paragraph 3.1.5 we analyze the dy-
namics of the two-coupled-loop system in detail and obtain
numerically the conditions for the coupled chaotic motion.
In paragraph 3.1.6 we introduce the receiving element and
demonstrate phase locking of the receiver to the chaotic
transmitted signal. We also study the effect of variation of
the receiving loop parameters on the phase locking. The em-
bodiment here has a particular simplicity that makes the
concept of chaotic synchronization both transparent and po-
tentially useful. In paragraph 3.1.6 we summarize our re-
sults and describe some extensions of the concept.

3.1.2 SYSTEM DESCRIPTION

A block diagram of a single, first-order, non uniformly sam-
pling DPLL is shown in FIGURE 6.. It consists of a sample-
and-hold (SH) and a variable frequency oscillator (VFO).
During the operation, the SH takes a discrete sample S(tk) of
the incoming signal at a sampling time tk when the VFO sig-
nals it to do so at a positive going zero crossing. The sam-
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pie is used to control the frequency of the VFO according to
a given function &(s) in such a way as to decrease the phase
difference between the incoming signal and the oscillator
output. As a result, there is a possibility of locked behav-
ior when the oscillator frequency adjusts itself to the in-
put frequency and locks to its phase, hence sampling always
at the same point on the input signal.

SW S(tk)
D VFO

SH

FIGURE 6. schematic repesentation of a single DPLL

Consider the case in which the incoming sigral is given by.

s(t) =Asin(t+00)

Suppose that the period of the oscillator is linearly relat-
ed to S(tk)as

Tk+l = To+bs(tk)

where T0=2ow0 . The center frequency &0 is the frequency of the
VFO in the absence of the applied signal. It was shown by Gil
and Gupta 3 that in a loop governed by Eq. (1), the evolution
of the phase difference between signal and oscillator output
is described by the nonlinear difference equation

4 (tk+ 1) = *(tk) -o)bAsin(0 (tk)) + 2n (6/1() 0 ) (2)
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Eq(2) is the well known sine-circle map, which has been stud-
ied in detail as a prototype for the quasi-periodic route to
chaos 9 . In the context of DPLL's, Eq(2) was studied by sever-
al authors 4 after Gil and Gupta.

In normal practical devices, where the frequency, not the
period, is linearly related to the input sample as

i(tk+1)= (o+bs(t d3)

then another map is obtained for the phase difference:

(tk +1) = (tk) + o+basin(tk) (4)

This is also of the form of a circle map, and displays the
usual behavior associated with such maps5.

3.1.3 Coupled Loops

The self-synchronization system of two coupled DPLL's, for
which the forcing input in one loop is the oscillator output
of the other loop, is shown in FIGURE 7.. We study here only
the case in which the frequency of the oscillator is linearly
related to the input sample according to Eq(3). Preliminary
calculations show that if the coupled system is governed by
Eq(1), similar qualitative results are obtained.

In we show a diagram that exemplifies the dynamics of the
coupled system. The signals in the figure, which are taken to
be sinusoidal, represent the time varying output of the
VFO's. Each time that one of these signals crosses the t axis
with a positive slope, the oscillator sends a signal to the
SH and an input sample is taken from the VFO output of the
other loop. The loop that samples switches its frequency to a
new value according to Eq (3).

The evolution of the system follows the steps described by
the following algorithm:

Given the frequencies wj,•a and the phases 0,, 0e of the two
VFO's at t-0, then:

0) Initialization: Find what should have been the last sam-
pling time tj and the next sampling time t', for both loops
i-i,2
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0.
ti= " (5)

21t - 0.
t O.(6)

---L

FIGURE 7. Two coupled self-sýnchronizing DPLLs

1) Search over the two DPLL's to find the loop "ll" with the
smallest time for the next sampling; that is, find "l" such
that

ti = rain (t'i) (7)

i-l, 2.

2) Calculate the input sample value, which is taken from the
output signal of the other VFO:
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si(t'l) = Asin~j(8

i•l

where

(i = (0 i -- ti) (9)

3) Update the frequency of the loop Ill according to Eq(3):

0(.f= 0o +bi(t'l) (10)

4) Set
tI = t' 1

t'l =tlI + 21 o'

Return to step 1.

VFO1 1

sin

siOE -. I I

sin4 2 V2

FIGURE 8. Schematic representation of the dynamics of the two coupled DPLLs
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For any time t, the system state is determined by four vari-
ables, that is, the frequencies and the phases of the two
loops. However, observe that the system state changes only
at the sampling instants,C1=0 mod 2n or .2=O mod 2n. At these
instants we need to know only the two variables 0 and ý of
the loop that does not sample. This is because

4=0

) = 60 + bs (tk)

for the loop that samples. In this way, we can evolve the
system at discrete times in a reduced variable space. For a
surface of section, say #2-0,and because

02 2 2 "- 1

the dynamics can be visualized in a two dimensional subspace
O1,J. The evolution is therefore determined by three vari-
ables, (say 2,, (o and *1, rather than the four variables of
the total phase space. We note that we do not have an explic-
it mapping, as in the case of a single loop. The system evo-
lution is instead described by the algorithm given above.We
find that two equations for the phases govern the dynamics of
the coupled system, namely

w0 + bi sin j
ýi' = + 2n- (11)

or 27c = 2ir+ (o 0 + bisinj (12)(00 + b isinýi,2

where i,j refers to the index of the loop,l or 2. The phases
that appear on the right hand side of eqs. (11) and (12)are
the phases associated with the last sampling times of loops i
and j, and the primes refer to the next sampling time. The
first equation applies when one loop samples at two or more
consecutive times while the other loop does not sample. The
second equation applies when successive sampling times orig-
inate from alternate loops. Note that we have taken A=1 since
it appears always multiplied by the gain b and we can take
this product as an unique parameter. Also, we consider that
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the b's are in principle distinct for the two loops, whereas
the center frequencies wo's are the same for both. This is
done to reduce the dimensionality of the parameter space.

When we evolve the dynamics we do not know in principle the
sequence in which Eqs. (11) and (12)will be applied; this
will depend on the loop parameters. In a general situation we
have to follow the steps of the algorithm described previ-
ously.

3.1.4 RESULTS

We numerically explored the dynamics of the two coupled DPLL
system, described above, by varying the parameters wa, b, and
b 2 . Initially we considered two identical loops, i.e.,same
values for their pararieters. In this situation we expected
that we would not lose any important aspects of the dynamical
behavior by observing the dynamics of only one of the loops.
We therefore studied the behavior of one loop at the sampling
times of the other, that is, we studied the system at the
surface of section *j=0, where i is chosen to be 1 or 2.
Without loss of generality, we took 0i-1.

In FIGURE 9.a we show the steady state bifurcation diagram
(after the transient period has died out) for $, at $.-O as a
function of b where b1-b 2 for 6)0l. The dynamics is charac-
terized by periodic cycles and a chaotic regime, which is in-
terwoven with periodic windows, as in many dissipative
dynamical systems. Initially the system locks in a period
one cycle. Then it bifurcates to a period two cycle where a
'splitting' bifurcation appearsI0. A splitting bifurcation
is observed when multiple basins of attraction emerge; the
initial condition determines which basin of attraction will
be chosen by the system. The new stable attractors have the
same periodicity as the attractors which become unstable.
This phenomenon has interesting consequences for the syn-
chronization of coupled DPLL's, as we s1all see in paragraph
3.1.4. Following the splitting bifurcation, we observe a
cascade of period doubling bifurcations and beyond this a
chaotic regime. By varying the center frequency wo, we ob-
served a similar qualitative behavior in a reverse order.
This can be understood in terms of the trajectory of passing
through an Arnold tongue 9 (region of phase locking) in the
parameter space. For b1•b 2, we observe period doubling se-
quences in the parameter plane, and also more complicated
bifurcation diagrams for certain choices of the parameters,
such as the one shown in FIGURE 9. b
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FIGURE 9.a Bifurcation diagram for the phase of loop 1 at 4)2=-0 aS a function of b MEb, -b 2

The phase diagram in the bl1b2 plane for (00=1 is shown in
FIGURE 10. The black regions represent the parts of the pa-

rameter space with a very large period, which indicates that
the system is chaotic at those points. As expected, the re-
gion of stability is mostly concentrated about the lower
values of the parameter b. If one of the loops (or both) has
b larger than a critical value -0.35, then phase diagram ap-
pears mainly chaotic. Some tongues of stability (periodic
cycles) are observed after the entrance into chaos.

As stated previously, we did not know in principle the
sequence in which Eqs. (ll)and (12) would be applied. However,
we observed numerically that anywhere within the period
doubling sequence, in the steady state, the loops sampled in
a fixed time sequence such that if one loop sampled twice,
then the other loop also sampled twice, the first one then
repeats the process, following exactly the sequence shown in
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We observed this for several choices of the initial
conditions and parameter values. We believe that this is a
generic process in the bifurcation cascade.

... ...........

.... ... "".-... .. .. - . .:

1.5n'

S.• .. -:

......................................-

0.5n

.... .... ..... . ,

. t . .

0
0 0.175 0.35 035250.

bi

FIGURE 9. bBifura.on diagram for the phase of loop. at .2-0 as a function of b, for b2 - 0.35 for

For those parameter values for which the dynamics lies with-
in the bifurcation sequence, we can write mapping equations
to describe the evolution of the system. They are given by

()0 + b sino,

(o 4~+ J 0 +b 2sino (13

= 2n0,o 0 + b Isin1)02 (14)
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21 ()0 + b2 siný (15)
ý2" 0 2' + 2r(0 + b1 sinO2,V5

2n - wo0 + b1 sin0I2,,16
•1"= 2t-2" (0 0 + b2 sino 1, (
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the orbit. The most stable orbits have null trace, giving the
parameter value that corresponds to the optimum stable sys-
tem performance for a given cycle. We show in TABLE 2. the
values of the parameter b (equivalent of b, = b 2 ) at these
super stable orbits of the bifurcation cascade for 00=1. Be-
cause of the splitting bifurcation, two super stable values
are found for the 2-cycle. The sequence of b's where the su-
per stable cycles occur converges with a geometric ratio
given by 8 -4.6692..., as in quadratic mappings. Thus the two
coupled DPLL's, when described by Eqs.(13),(14),(15),and(16)
have the same universality class as dissipative systems gov-
erned by a quadratic map. At the period doubling bifurca-
tions the trace of the Jacobian matrix is -1, as expected;
for the splitting bifurcation it is 1.

TABLE 2. Values of b= bl-b2 for the super stable orbits with wO -1

Period b
1 CkLo21C
2 0.2808560407
2 0.3496205907
4 0.3672296277
8 0.3715083345
16 0.3724198720
32 0.3726153586

64 0.3726572262

The border of stability of the period-one cycle can be ob-
tained analytically by explicit examination of the Jacobian
matrix near 4'i =ý2= 0, which is the stable sampling phase of
the 1 - cycle. Suppose that one perturbs the frequency of one
loop in such a way that its frequency changes to o0 +c; then
one finds that at the next sampling time, the perturbation in
the frequency with respect to the locked state will be

S2-- (blb(17)

with the bracketed term being the trace of the Jacobian ma-
trix. At the super stable cycle the perturbation vanishes,
and therefore
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(0
bI + b2 (18)

The period doubling bifurcation will occur when - =-1

Thus at this point,

b1+b2 =(19)

1.5n• .,."

7t7

0.5o

0I

I

0.8 0.9 1 1.1' 1.2

FIGURE 11. a Chaotic (or strange) attractor assotated with loop I for b, - 0.15, b2 - 0.55 and (t)0 - 1
at 02 - 0

We studied the chaotic regime in the phase vs. frequency
plane, by taking a surface of section in which the phase of
one (any one) loop is zero, as described previously. The be-
havior of the system can be characterized by Liapunov expo-
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nents, which measure the mean rate of exponential separation
of neighboring trajectories. The number of Liapunov expo-
nents depends on the dimensionality -f the system. If one of
the exponents is positive, then the orbi.. is chaotic. We used
the algorithm of ref. [11] to verify that the orbit at
b 1 =0.15,b 2 =0.55 and o0=l has at least one positive Liapunov
exponent and is therefore chaotic. In F T7 URE 11. a we have
used these parameters to plot the phase vs. frequency of loop
1 at 42=0. A magnification of that figure (FIGURE llb) shows
a finely structured gr-,,p of neighboring trajectories, which
is a characteristic of strange attractors. Observe that for
ý, near 0 the only possible ,alue for (o is - wo. This is
easily understood when we follow the dynamics shown in Every
time that the phase of loop 1 is near 2n the input sample
taken by loop 2 will be near zero. Consequently, the frequen-
cy of loop 2 will be close to w0. The next loop to sample
will be loop 1, and for an analogous reason its frequency
will also be close to the center frequency.

5.4

5.2

5

4.8 N .

4.6 ,
0.84 0.855 0.87 0.885 0.9

col

FIGURE lIlb Magnification of box In figure Ila
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3.1.5 SYNCHRONIZATION TO A CHAOTIC SIGNAL

We consider in this section the synchronization to a chaotic
signal produced by the coupled DPLL's. The idea of synchro-
nizing to chaotic signals was introduced recently by Pecora
and Carroll 7 . They have shown that certain subsystems of non-
linear, chaotic systems can be made to synchronize by link-
ing them with common signals. The synchronization is
obtained from the influence of the chaotic driving system
(the transmitter) on the response system (the receiver)
while the driving system remain unperturbed. In their work,
Pecora and Carroll investigated low-dimensional systems de.-
scribed by ODE's. They showed numerically that the necessary
condition for the subsystem to follow the master system is
that it have only negative Liapunov exponents. The concept
of synchronized chaos was applied recently to spatially ex-
tended systems consisting of an array of coupled lasers1 2 . It
was shown that there are extended systems where the synchro-
nized chaos corresponds to spatial order and temporal disor-
der. By varying the external parameters this scenario breaks
down and spatiotemporal chaos, or turbulence, may appear.

:STi 
SHSH3

VF02

FIGURE 12. Communication system consisting of 3 DPLLS
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The system we studied is shown in FIGURE 12.. The driving (or
master) system is the two coupled DPLL system studied in the
previous sections. The signal that originates from one of
the VFO's (in this case the second one) is used to feed a
slave system which consists of one single DPLL (the third
loop).For the system shown, we investigated the parameter
values that yield synchronization of the signals which orig-
inated from loop 1 and loop 3.We observe that there is a re-
gion of the parameter space where the slave system
completely synchronizes to the driving system, whereas in
other regions they seem practically uncorrelated. We showed
in FIGURE 10. the region of the parameter space where chaotic
behavior is expected for the driving system. If we pick the
point bl=0.15 and b 2 =0.55 (for which we verified that the
temporal dynamics is chaotic at the output of each VFO) we
observe that at this point, for b3 =bI, the steady state tem-
poral evolution of the outputs of VFO 1 and VFO 3 are com-
pletely identical. This is illustrated in FIGURE 13., where
we plot 03 against ý1, for the surface of section 02=0. Thus,
as in the case of coupled lasers 1 2 , we observe a regime of
temporal chaos and spatial order. The result here might have
been expected because, as we can see from FIGURE 10., b, and
b3 are chosen such that loops 1 and 3 are operating in a re-
gime that would be phase locked to an appropriate sinusoidal
input signal. With a chaotic input, we cannot expect a phase
locked output, but it is intuitive to expect that the stable
loops will have identical outputs for identical inputs, as
observed.

Those expectations are verified globally in FIGURE 14., in
which the white region indicates the parameter region of
synchronization. The necessary condition for the existence
of synchronized chaos is that all the Liapunov exponents of
the subsystem must be negative, as shown by Pecora and Car-
roll. We observe that the value bl= b 3 <= 0.35 roughly marks
the border of synchronization. This corresponds approximate-
ly to the region of the parameter space, as seen in FIGURE
10., of regular motion for loop 1 and loop 3. Thus, even if
loop 2 is chaotic, i.e., b2 Ž 0.35 synchronization may be
achieved between loop 1 and loop 3.

When bj-b 3 Ž 0.35 (the cross-hatched portion), synchroniza-
tion of loop 1 and loop 3 is not observed in most of the pa-
rameter space. This is consistent with their chaotic
response to any input signal for these parameters. For this
regime the resulting chaotic attractor appears to have a
higher dimensionality (see FIGURE 15.), as in the case of the
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array of coupled lasers1 2 . Contrast this figure with FIGURE
11. a, which shows a chaotic attractor in the region of syn-
chronization. Theoretical questions remain concerning such
problems as quantitative differences between different types
of attractor, characterizing them by fractal dimension, etc.

For parameter values where multiple basins of attraction are
found, the synchronization may not occur. One clear example
in the figure is the region of the splitting bifurcations
(bl- b 2 - 0.33). There we have two separate 2-cycles so that
the system does not synchronize if loops 1 and 3 settle in
different basins of attraction.

277,

//

1.51c!

ý3"

o.-
0.5n

0 057C 15t 27

FIGURE 13. *j vs. *3 for c - lrb•-b 3-0.15 and b2 O.S5 at ý2-0

In a practical situation, it would not be possible to make b1
and b 3 identical. Pecora and Carroll addressed this question
for systems described by differential equations and found
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that the synchronization persists, but with some error be-
tween the dynamical values of the master and slave system. We
expect this same behavior in our coupled loop transmitter-
receiver system, which indeed turns out to be the case. In
FIGURE 16. we make b 3 =O.1 and use the same values b1 =0.15 and
b2 =0.55 given in FIGURE 13. We observe that in this case,
when loop 3 is not completely identical to loop 1, the syn-
chronization is degraded, but the loops have retained much
of their correlation.
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FIGURE 15. Chaotic attractor associated with loop 3 f b, - b2 -b 3 -0.55 and ;:-1 at 42-0

3.1.6 CONCLUSIONS AND DISCUSSIONS

We have seen that a system of two coupled DPLL's has param-
eter ranges in which its behavior is one to one with its sim-
pler relative, a single DPLL. The larger phase space allows

more complicated behavior over other parameter ranges, and
some of the similarities and differences are noted in our
"study. In particular, the sequence of bifurcations leading
to chaos can be more complicated than period doubling, as
seen in FIGURE 9.a. The chaos observed on the output of the

two loops is different for the following two cases: (1) the

b's for both loops are chosen such that they are both unsta-
ble (see FIGURE 15.), and (2) one loop is stable and the oth-
er unstable (see FIGURE 11. a).

one key property of a coupled system that is of practical in-
terest is that it can transmit a chaotic signal which can be
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synchronized in time with a receiver. This synchronization
to chaos, demonstrated in FIGURE 13., opens up new possibil-
ities for communications systems. An exploration of the pa-
rameter range over which synchronization can be achieved
(shown in FIGURE 14.) indicates general agreement with the
intuitive notion that the identical subsystems of the trans-
mitter and receiver must themselves be stable. If the sub-
system parameters are not identical then the synchronization
is not perfect, as shown in FIGURE 16. Information, however,
can still be transmitted.

It is clear that our study represents only a beginning of a
detailed exploration of both the nonlinear dynamics and the
communications possibilities. Some practical questions con-
cern methods of modulation and implementation. Quantifica-
tion of synchronization degradation, shown qualitatively in
FIGURE 16., is also important for practical applications.

A more general extension of this study concerns larger sys-
tems. It is clear from the above analysis that a repeater
chain is more closely allied to the self-synchronizing sys-
tem studied here than to a coupled map lattice with one way
coupling (that it might superficially resemble). If the re-
peater is put on a circle, then it is also self-synchroniz-
ing. Studies of more complex interconnections also suggest
themselves.
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3.2 SECURE COMMUNICATIONS BY SYNCHRONIZATION TO A
CHAOTIC SIGNAL.

3.2.1 NTRODUCTION
The concept of synchronized chaos was introduced recently by

Pecora and Carroll'. They showed how two systems linked by a
chaotic signal synchronize with each other. One potential
application of this concept is to the problem of secure
communications. The idea is to have two remote systems linked
by the same chaotic signal and synchronized with each other.
In section 3.1 this possibility was explored numerically in a
system of coupled Digital Phase Locked Loops (DPLL's). Using
two coupled loops as a transmitter of a chaotic signal, we
showed how a third loop can synchronize with one of the
transmitter elements.
Analog and digital PLL's are electronic devices used in a
variety of communication applications such as modulation and
demodulation, noise reduction, etc. 2 , and also as
synchronization devices to lock the phase of a receiver to
that of a transmitter. In a single DPLL the phase difference
between transmitter and receiver is described by a circle map
when the input is a sinusoidal signal with a constant
amplitude and frequency. 3 ' 4 . Circle maps have been studied
extensively in the past. They exhibit periodic cycles,
quasiperiodic behavior and chaos 5 . For two coupled DPLL's we
also observed a complicated behavior characterized by
periodicity, quasiperiodicity and chaos. The work reported
here is a more extensive study of self-synchronization of
DPLL's and synchronization to a chaotic signal. The DPLL's
considered here have different features from those studied in
section 3.1, as they correspond more closely to the
experimental system studied. This section is organized as
follows: In section 3.2.2 we give a description of the system
studied and present an algorithm to evolve the dynamics of
coupled DPLL's. In section 3.2.3 we study in detail two
coupled DPLL's. We investigate the synchronization to a
chaotic signal using these two coupled DPLL's as a transmitter
in section 3.2.4. In section 3.2.5 we study the quantification
of the synchronization using the concept of mutual
information. In section 3.2.6 we study the synchronization in
more complex systems. The last section presents our
conclusions.

3.2.2 SYSTEM DESCRIPTION
FIGURE 17.is the block diagram of a single, first-order,
nonuniformly sampling DPLL, whose block diagram is shown in.
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It consists of a sample-and-hold (SH) and a variable frequency
oscillator (VFO). During the operation, the SH takes a
discrete sample v(ti) of the incoming signal at the sampling
time ti when the VFO signals it to do so. The sample value v
is used to control the frequency of the VFO according to a
given function in such a way as to decrease the phase
difference between the incoming signal and the oscillator
output. As a result, for a range of parameters, there is a
possibility of locked behavior when the oscillator frequency
adjusts itself to the input frequency and locks to its phase,
hence sampling always at the same point on the input signal.

S W S H - 1 S(tk) V 0

FIGURE 17. Schematk representation of a single DPLL

It is easily shown4 that when the input signal is a sinusoidal
function and the frequency of the VFO is linearly related to
the sampled value v(ti) as

f = f - b [v (ti) + voff] (20)

that the phase difference between signal and the VFO output
is described by a circle map. This kind of nonlinear map
displays a rich phase space with tongues of periodic cycles,
quasiperiodic behavior and chaos 5 . In eq, (20) fo is the center
frequency of the VFO, i.e., its frequency in the absence of
applied signal, b is the loop gain, and voff is an offset
voltage that may be added to the signal in order to bring it
to the appropriate voltage range of operation in an
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experimental device.
We can generalize this operation to a more complex
configuration with N interconnected loops, each loop having a
VFO output described by a wave form vj(j-l,...,N). In this
system, every time that a vj attains its peak value the jth
loop takes a sample from the outputs of the VFO's to which it
is connected. The input to the j-th loop is assumed to be given
by a linear combination of the VFO outputs of the other loops,
that is

N

S(ti) - Zaij[vjp.(ti)+vOff] (21)

j=I

The matrix A=[aij] is called the interconnection matrix for
the system. In our examples we consider aii=O. The value s(ti)
is used to adjust the frequency of the ith VFO according to

f. f?-b-s (22)1 1 1

where f! and bi are the center frequency and the gain,
respectively, of the ith VFO. For a system of two coupled
loops it is possible to derive mapping equations that describe

6the evolution of the system . For more complex systems of
coupled DPLL's it may be difficult or impossible to find such
maps analytically. We can, however, easily evolve a system of
any number of DPLL's in any configuration, using the algorithm
presented in Ref. 5 and described below.
ALGORITHM: Suppose that in a system of N DPLL's interconnected
through the matrix A the following information is given at
t-0: the VFO's output waveforms vi, the instantaneous
frequencies functions fi, the initial phases bi(O), then
0) Initialization: Find what should have been the last
sampling time ti and the next sampling time t'i for each loop

ti =(23a)
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t' - (23b)1 fi

1) Search over the DPLL's to find the loop 1 with the smallest
time for the next sampling; that is, find 1 such that

t'1 =min R [t'i]
(24)

i= 1..,N

2) Calculate the input sample value, which is taken from the
output signal of the other VFO's according to (21), taking

¢j(tj) = (t1 -tQ (25)

3) Update the frequency of the loop 1 according to eq,(22).
4) Sett, = t and t' = t +I/(f'). Return to step 1.

3.2.3 TWO COUPLED LOOPS
In this section we study the dynamics of two coupled loops,

where the input to one loop is the output of the other loop,
and vice-versa as shown schematically in FIGURE 18. In the
experimental device studied these outputs are voltages, which
have a triangular wave form, and the sample is taken at the
peak of the wave. We can use the convention that at this
instant the phase of the wave is zero. Thus we represent the
output signal of the VFO's as v(t)-Ah(ý(t)) with

- 4ý (t) + 1 0:(t :5
11

hQý(t)) = 1 (26)

44(t)+ (-3) i (<

where *(t) = ft, with f the frequency, and 05t:1/f. In this
coupled loop system each time that one of the triangular waves
attains *o-0 (mod 1) the oscillator sends a signal to its SH
which then samples the VFO output of the other loop. The loop
that samples switches its frequency to a new value according
to eq. (22). In FIGURE 19. we show a diagram that illustrates
the algorithm given above for the two self-synchronized
DPLL's, with a waveform given by eq.(26). The signals in the
figure represent the time varying output voltages of the
VFO's. The two main differences between this system and the
one studied in section 3.1 are that here the wave is
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triangular rather than sinusoidal and the sampling is taken
at the peak of the wave rather than at a zero crossing, so
that it corresponds to the experimental configuration. Some
of the consequences due to this will be discussed in the iext
sections.

IGURE 18. To cople slf s ozn DPL- S

In a system of two coupled DPLL's, for any time t, the system

state is determined by four variables, that is, the
frequencies and the phases of the two loops. However, the
system state changes only at the sampling instants, 01=0 (mod
1) or 02=0 (mod 1). At these instants we need to know only the
two variables (f and •) of the loop that does not sample. This
is because 0 -0 and f= f-bs(t,) for the loop that samples. In
this way, we can evolve the system at discrete times in a
reduced variable space. For a surface of section, say 02=0,
and because f = f2 (fl/0 1), the dynamics can be visualized in a
two dimensional subspace (fl,0 1 ). The evolution is therefore
determined by three variables, (say 02 [• 0], f, and *i),

rather than the four variables of the total phase space.
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FIGURE 19. Schematic representation of the dynamics of the two coupled DPLLs

There are eight parameters in the coupled system. For each
loop we have the amplitudes Ai's, the gains bi's, the center

frequencies fi's and the offset voltages vff's. We can

normalize the parameters in the following way. The equations
that determine the dynamical evolution of the loops are

f'/= f.-bl[Alh(ý2 ) +vff]']l 1 = 0 (27a)

f/ = -b 2 [A 2 h(b) +v~ff]'( 2 = 0 (27b)

Dividing Eq. (8) by f2-b 2 v-ff we obtain
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S= fo-B 1 h (0 2 ) (28a)

f2' = 1 -B 2h(0 1) (28b)

where

f/ f,- b voff biAi
f ffB = of Bvff (28c)

1 o,-b of,, 2 b fo,- b vof
2 22 2 ~2 2 2 2 2

Thus there are three dimensionless fundamental parameters in
the system, which are the two normalized gains B1 and B2 and
the normalized center frequency fo of one of the two loops,
say loop 1. Since the frequencies of these discrete time
systems are positively defined, we must have from eqs. (28a),
(28b), and (28c) that Bl<foand B2 <1, since h(ý) e [-1,1].
By varying these three parameters we observe numerically in
the system of two coupled loops, regular, quasiperi,li-c and
chaotic behavior. We begin by doing an analytical anuly.is of
the locked state, i.e., when both loops synchronize to a
common frequency T,,. In this case 01(02=0)=-02(01=0)= A0. From
eqs, (28a), (28b)and(28c) we obtain

fs' = fo- B1h (-Ao) (29a)

fs'= 1-B 2h (AO) (29b)

By noting that h(o) is an even function, we obtain from this
system of equations:

B2f° - B1I

fs. .- B2-B I(30a)

1-t°
h(AO) B I -_ _

B2 -B 1  (30b)
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We see immediately that if B1 -B 2 , f. and h(A•) are undefined.
No locked state exists. Also, if there is parameter matching
between the two loops, i.e. BI=B2 and f 0 =l, then any initial
condition given to the system is marginally stable. Thus, in
our numerical results we do not plot any solution when there
is parameter matching between the loops. The situation would
be different if h(o) were an odd function, as was the case
studied in section 3.1. There we obtained a stable lccked
state when all the parameters of the two loops were identical.
The loops will be in phase when A4=0, which implies h(A#)=l.
From eq. (30b) one sees for this case that the relation
f 0 =l+B1 -B2 must be satisfied. If f0=1 we obtain Ts,=l and
h(A0)=0, which implies AO=0.25 or A4=0.75. We observe
numerically that if B1 <B2 (Bl>B 2 ) then A4=0.75 (Aý=0.25) are
unstable solutions.
We show in FIGURE 20.,FIGURE 21. a and FIGURE 21.b bifurcation
diagrams for two typical cases. In FIGURE 20. we plot 01 vs.
B1 at 02=0 for fixed values of B2 and fo, namely, B2 =0.2 and
f°=l. Observe that at BI=B2 there is a jump in A4= ý for the
locked state solution, as discussed in the previous paragraph.
Next we take Bl=B2-0.2 and plot 01 vs. fo at 02=0 (FIGURE 21.
a) and 02 vs. f0 at 0 1i=0 (FIGURE 21.b). In the last example no
locked state exists, i.e., a state where both loops would have
the same frequency, as obtained from eqs.(30a) and (30b),. The
big window around f 0 =2 corresponds to the case T'2 ,=2f 1 ,.
The complete phase diagram is situated in a three dimensional
space, since we have three fundamental parameters. We study
some particular planes of the phase diagram. In the first case
we take B1 =0. This corresponds to the case in which the
coupling between loops is only in one direction. That is, the
input of loop 2 is a triangular wave with constant frequency
fo. Similarly to what was done in Ref. [5], we can easily
derive that the phase difference between loops 1 and 2 at the
sampling instants of loop 2 is given by

B2h (31)
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FIGURE 20. Bifurcation diagram for C)' (4)2 -0) as a function of B, for B2 -. 2 and f= 0

where h(Q1 ) is given by eq. (26). This is a one-dimensional
nonlinear map which shares some properties with circle maps.
Because of the discontinuity in the h(ý) derivative this map
has a phase diagram that is topologically different from the
diagram of the circle map. In FIGURE 22. we show that phase
diagram of the map (eq (31)). The black regions were
determined numerically to have positive Liapunov exponent X.
The Liapunov exponent measures the rate of the exponential
separation between two neighboring trajectories, and it is
defined as 7

[= N -> " log dn](n - (32)
N-i
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FIURE 21. a Bifurcation diagram for 0,(02 - 0) versus 1* with B, B2 - .2

where the superscript n denotes the iteration index.
It is well known that if a system has at least one positive
Liapunov exponent in a given region of the parameter space,
then the system is chaotic in that region. We considered

positive in the calculations when X > 10-3 for 30,000
iterations after a transient of 3000 iterations. In the region
where chaotic motion can appear the map is noninvertible. The
border of invertibility of (eq (31)) is shown in Fig. (6) by
a dashed line and is determined by fo =(l-B2 ) 2/(4B 2)- We
observe the existence of tongues of stability similar to the
Arnold tongues. However, as we mentioned, this phase diagram
is not topologically identical to the phase diagram of a
circle map. For instance, at f0=1 a circle map would display
a sequence of period doubling bifurcations, which is not
observed here. The bifurcation sequence in our map is
truncated at the 2-cycle.
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FIGURE 21.b Bifurcation diagram for 42 (4j -0) versus 1 with B, B2 - .2

We study two simplified cases of the coupled system. First we
study the plane B. B1 =B2. Now we have coupling in both

directions. In this case the calculation of the Liapunov
exponent is not straightforward, because of the

6discontinuities in the mapping equations . We applied some
tests and algorithms used generally for experimental series 8

to calculate the Liapunov exponent.We show in FIGURE 23.a the
phase diagram for the plane B vs. f0. The white region
indicates periodic motion, and the shaded part indicates a
very large period, which implies either quasi -periodicity or
"chaos. We consider the motion periodic if where

the superscript indicates the iteration number of loop 2.A
transient of 30,000 iterations was used. We expect that the
quasiperiodic behavior in analogy with the map given by eq
(31), is represented by the dots seen in the region where B
is small. For large B, where we have most of the shaded region,
we made several tests using the algorithm given in Ref. 8 to
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FIGURE 22. Phase diagram associated with equation 31 showing the chaotic region (dotted) and
periodic and quasiperiodic solutions (white). The border of invertibility is indicated by a dashed tine.

confirm that the Liapunov exponent there is positive. Now we

consider f°--i and plot in FIGURE 23. b (shaded) the regions
in the B2 vs. B1 plane where the motion is nonperiodic, ac-
cording to the criterion used to make FIGURE 23.a. The sta-
ble, non- chaotic, regime is most concentrated around the
line BI=B2 , and the diagram is symmetric with respect to this
line.

3.2.4 SYNCHRONIZATION TO A CHAOTIC SIGNAL}

We consider in this section the synchronization to a chaotic
signal produced by the coupled DPLLs using an idea intro-
duced recently by Pecora and Carroll 1 . They have shown that

certain subsystems of nonlinear, chaotic systems can be made
to synchronize by linking them with common signals. The syn-
chronization is obtained by transmitting a variable of the
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chaotic driving system (the transmitter) to be a correspond-
ing variable of the response system (the receiver) while the
driving system remain unperturbed.In their work, Pecora and
Carroll investigated low-dimensional systems described by
ODEs. They showed numerically that the necessary condition
for the subsystem to follow the master system is that it have
only negative Liapunov exponents. We have shown in section
3.1 that this concept can be applied to coupled DPLLs. The
concept of synchronized chaos was applied recently to spa-
tially extended systems consisting of an array of coupled
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FIGURE 24. Communication system consisting of three coupled DPLLS

Due to the presence of more than one basin of attraction, or
due to determined lack of symmetries in the system, loops 1
and 3 may not synchronize, as discussed below.
To demonstrate the synchronization between transmitter and
receiver we plot in FIGURE 25. the outputs of loops 1 and 3
for the particular point BI=B 2=B 3 =0.2 and f0 = , 4 where the
transmitter has positive Liapunov exponent, and hence the
phases ý1, 42 and *3 are chaotic. To check if the signal is
indeed chaotic we use the algorithm given in Ref. 8. The
quantities shown in the figure are ý3 vs. 01 at 02=0, and it
is seen that the synchronization between loops 1 and 3 is
perfect. Thus even with different initial conditions, as used
in the simulations, the steady state temporal evolution of
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loops 1 and 3 are completely identical.
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FIGURE25. .3 vs l at 04ýOfor BI -B 2 -B3 - 0.2 and fo =

We show in FIGURE 26. a the regions (white) where
synchronization is observed between loops 1 and 3 for BI=B2 =B 3

-B in the plane B vs. fo. The initial condition used was

01=0.1, 02-0.3 and 03 =0.4, and f 1 -f 2 -f 3 -1. When Fig. 10(a) is
compared with FIGURE 23.a, one sees that for regions where the
transmitter has a periodic behavior, the synchronization
between loops 1 and 3 is not observed. Note that the
transmitter in our system consisting of a system of two
coupled DPLLs is intrinsically different from the receiver,
where the coupling is only in one direction. We observe that
this lack of symmetry between the transmitter and receiver
causes the nonsynchronization between loops 1 and 3 in the
regions where periodic behavior exists in the transmitter, as
well as in the receiver. For example, this is seen when B is
small and fo is close to an odd number in FIGURE 26. a. We
checked with several sets of initial conditions and the
synchronization of loops 1 and 3 was never obtained in these
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FIGURE 26. a Diagram showing the region of synchronization between loops 1 and 3 (white region)
for B -ý-B, - B2 - B3 Vs.f

In FIGURE 26.b we show the region (white) of synchronization
between loops 1 and 3 for the plane B2 vs. B, and f,=l. We also
observe nonsynchronization between loops 1 and 3 in the region
where the transmitter is periodic. This occurs, for instance,
f or B2>Bj and B2 E [ 0,0. 5 ], where a cycle with period one is
observed. The phase difference of loops 1 and 3 with respect
to loop 2 is in this case given respectively by A4=k 0.25 and

=0.75, and is found to be independent of the initial
conditions. The nonsynchronization is again due to the lack
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of symmetry between the first and the third loop.
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FIGURE 26.b Diagrat showing the region of synchronization between loops and 3 (white eion)B, vs. B2 for t' - 1

The chaotic attractors obtained by plotting d3 VS men3o at o2=0
are shown in FIGURE 27. a and FIGURE 27. b. The first case,
FIGURE 27. a, corresponds to the strange attractor obtained
for BOcB2=B3t0.2 and to, = =er 4, where loops 1 and 3synchronize. In FIGURI 27 b the attractor for BI-B2-B3=0.4
and fI •= 3.5 corresponds to nonsynchronization between
receiver and transmitter. In the second case, the attractor
seems to explore more regions of the phase space.
It was noted in Ref. 9 that when synchronization between the
master and slave systems occurs, then the dimensionality of
the system as a whole is smaller than in the case the synch-
ronization is not observed. This was shown by calculating
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FIGURE 27. a Chaotc atbactor 3 v f3 at 2 - 0 for B -B 2 - B3 -0.2 and f = f03 4

We also confirmed this fact in our system by calculating the
correlation dimension of the chaotic attractors for these two
cases. The correlation dimension represents a lower bound to
the number of independent variables necessary to describe or
model the underlying dynamics of the attractor. In general,
for chaotic attractors, if this positive defined dimension is
a fractional number, then the bound is the next integer.
Grassberger and Procaccia introduced an efficient algorithm
to calculate the correlation dimension dc, which is described
in detail in Ref. 10. We calculated dc for the attractors
shown in FIGURE 27. a and FIGURE 27. b using the algorithm
given in Ref. 10. We find for the synchronized case (FIGURE
27. a)dc- I.I. For the attractor shown in FIGURE 27. b we found
dc - 2.5. Thus the underlying dynamics for the communication
system for these parameter sets can be described by two and
three variables for the cases where synchronization and
nonsynchronization is observed, respectively.
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3.2.5 QUANTIFICATION OF THE SYNCHRONIZATION
in a practical situation, it would not be possible to make

the parameters of loops 1 and 3 completely identical. Pecora
and Carroll observed that even in the case that the stable
loops in the transmitter and receiver are not identical, the
synchronization persists, but with some error between the
dynamical values of the master and slave system. This may be
an undesirable property for secure communication
applications.
In our simulations we observed that the degree of correlation
between the transmitter and receiver strongly depends on the
parameter that is being varied. For our system making the
center frequency r. slightly different, say 1%, from r. loops
1 and 3 become practically uncorrelated, as seen in. Whereas,
if we vary the gain B3 by a much larger relative amount with
respect to B1 , the degree of correlation between loops 1 and
3 remains high, as shown in FIGURE 28. b.
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We use the concept of mutual information to quantitatively
characterize the degree of correlation between the
transmitter and receiver when linked by the same chaotic
signal. The concept of mutual information was introduced by
Shannon11 as a quantitative measure of the general dependence
between two variables. If two variables are independent, the
mutual information between them is zero. If the two variables
are strongly dependent, the mutual information between them
is large. It is well known that the mutual information is a
better quantity to measure dependence than the correlation
function, which only measures the linear dependence.
We begin by briefly reviewing the basic definition of mutual
information . Consider a dynamical system that is

described by the discrete variable X, and that this system has
relaxed to an attractor. One starts by dividing the phase
space of X, into N boxes. Denote by p(i.) the probability that

a measurement of the system will find the variable X, in the
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ith box. Do the same for X2 . If two systems are measured
simultaneously, then the relevant probability distributions
are p(il), P(i 2 ), and the joint probability distribution
P(i,1i 2 )

'a.

0.75

0.25 A

0 0.25 0 0.751

C -

FIGURE 28. bO3 v& at2- 0for8 1-B 2 01, B3 -0.25 and f 4,f 4.

The mutual information is defined as

I( 1X) = YP iv 29ifl[ ]09 )(3

where the sum extends over all elements of the joint partition
for which p(il) and P(i2) are both nonzero. The mutual
information gives the amount of information gained, in bits,
about one system from a measurement of the other. It is a
dynamical invariant, i.e., it does not depend on the system
of coordinates used. When the number of cells of the phase
space partition N is increased, the resolution of measurement
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is also increased, as well as the information about the state
of the system. Consequently, the mutual information will
depend on N. If Xland X2 are independent, then p(il,i 2 )=
p(il)p(i 2 ) and I(XIX 2 )=0.
Mutual information was recently used in Ref. 10 in the context
of chaotic synchronization. It was shown that the mutual
information is large when two subsystems are operating in the
regime of chaotic synchronization, as described above, which
corresponds to the regime of spatial order and temporal
disorder. The mutual information rapidly decreases to a small
value when all subsystems are operating in the chaotic regime,
which corresponds to spatiotemporal chaos.
We calculated the mutual information for the three loop system
shown in FIGURE 24. We also calculated a normalized mutual
information using the following definition

I(X ,X )
I' (X 1, X 2 ) = P (il, In2P (il, 2) (34)

li1 12

Thus, if the outputs of systems 1 and 2 are completely
identical, then p(i 1 ,i 2 ) = P(i 1 )= P i 2 ), and I'(X 1 ,X 2 )=l. We
analyzed two cases described below. In all of them we used
30,000 points in the computation after the transient died. We
divided the interval [-1,1] (range of the voltage signal) into
200 boxes. The data used in the calculation are the values of
the voltage of the signals of loops 1 and 3 when loop 2
samples. If we use the phase as the variable studied, instead
of the voltage, the results obtained are very similar to the
ones that we will show.
In the first case we take B1 = B2 = B3 = 0.2, fo = 4 and vary
f'. We show in FIGURE 29. a I vs. fo. The mutual information
between loops 1 and 3 is large only when the difference
between their center frequencies is very small or null. The
mutual information attains its maximum at f = fo where the
transmitter and receiver are completely synchronized. At this
point I'=l. We observe that I and IV are small and
approximately constant if the center frequencies of loops 1
and 3 are not identical (or almost identical) except for
fof = 1. This indicates that parameter matching between
loops 2 and 3 increases the correlation between transmitter
and receiver. This is in some sense expected, since loop 1 is
fed by loop 2.
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Now let us examine the mutual information for another plane
of the parameter space. We takefo, = f = 4, and B1 = B2 = 0.2
and vary B3 . The mutual information between loops 1 and 3 for
this example is shown in FIGURE 29. b. Again the maximum of I
and I' occurs wnen loops 1 and 3 are identical, and in this
case I'=l. On the other hand, unlike the case studied in the
last paragraph, the mutual information between loops 1 and 3
decreases quite slowly when the difference JB1 -B 3 I
increases.
This implies that if for security reasons one needs a
communication system that is very sensitive to variations in
the parameters, then the center frequency value could be used
as a key. On the other hand, if one operates in a very noisy
environment, then the gain might be better for this purpose.
In this case, one can make the system complicated enough, e.g.
by adding other loops in the transmitter and receiver, in
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order to make more difficult the interception of the message.
This is discussed in the next section.
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FIGURE 29. b Mutual information bet~een 1 11 and loop 3; 1 vs. B3 for B, B2 - 0.2 and

P3 4

3.2.6 MORE COMPLEX SYSTEMS

FIGURE 30. Communication system consisting of 5 loops
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We tested the idea of chaotic synchronization in a more
complex system (shown in FIGURE 30.), where the transmitter
consists of three loops and the receiver of 2 loops. Thus, for
the receiver we have four control parameters governing its
behavior, i.e., two center frequencies and two gains. By
normalizing the parameters we may take, without loss of
generality, fo = 1. Consequently the complete system,
transmitter plus receiver, has a total of 9 parameters. We
verified that only in the case that loop 1 and loop 2 are
completely identical to loops 4 and 5, respectively, that
perfect synchronization between loops 2 and 5 is achieved as
well as between loops 1 and 4
In FIGURE 26.a, we show the phase output of loops 2 and 5 for
a typical example, that is, B1 - B2 -B 3 = B4 =B5=0.2,
S= f = 4and f, = f = 5. The synchronization between
transmitter and receiver is perfect in this case. If one of
the loops 4 or 5 is not identical to its respective loop in
the transmitter, then the synchronization is seriously
affected, as shown in FIGURE 26. b, where the parameters are
identical to those ones taken in FIGURE 26.a, except for
. = 4.05

More complex configurations could be imagined. However we
argue that no chaotic loop should exist in the receiver. If
there is a chaotic loop in the receiver, then due to the
sensitivity to the initial conditions we do not expect
synchronization between the receiver and the transmitter,
even if there is parameter matching. In this case, an
infinitely small difference in the initial conditions between
the transmitter and the receiver will increase exponentially
in time. On the other hand, the existence of several chaotic
loops in the transmitter may be a desirable configuration, for
security reasons, since this could make the transmitted signal
look more chaotic, having a higher dimension, as seen in
FIGURE 27. a and FIGURE 27. b

3.2.7 CONCLUSIONS
We studied the synchronization to a chaotic signal in a system
of coupled DPLL's. Our transmitter consists of two self-
synchronized DPLL's, loops 1 and 2, and the receiver consists
of a third loop. The phase diagram of the transmitter and the
region of synchronization between loops 1 and 3 was studied
numerically for some planes of the parameter space. We used
the concept of mutual information to quantify the degree of
correlation between transmitter and receiver. We verified
that if the center frequencies of loops 1 and 3 are not
completely identical (or almost identical) the synchron-
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ization between them strongly degraded. Whereas, a quite large
difference between the gains of the loops only weakly affects
the synchronization.

/
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Finally, we investigated a more complex system consisting of
five coupled DPLL's. We showed that only when the stable part
of the transmitter is completely identical to the receiver,
the is perfect synchronization between them is observed
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3.3 Mapping Equations

We derive mapping equations for the coupled digital phase-locked loop (DPLL) system.
The phase space we will derive will be 3-dimensional, with each state having a conve-
nient interpretation. The mapping equations will be differentiable everywhere except on a
two-dimensional planar subspace. We show that these equations, and hence the dynamics
of the coupled digital PLL's are generalizations of the dynamics of a bouncing ball on a
large periodically-varying table, a system which has been studied by several authors. We
show that no fixed points exist in this map, but that period-two points do exist..

To begin, we define mapping equations for the system. We describe the dynamics of the
loops at the sampling time of either loop. Consider the nth sample, and define the follow-
ing times

an = time until loop 0 next samples

bn = time since loop 0 last sampled

cn = time until loop 1 next samples (35)

dn = time since loop 1 last sampled

If loop 0 is sampling at n, define b. - 0, while if loop I is sampling at n define 4 - 0. It
is clear that the evolution of these four time variables uniquely describes the dynamics of
the coupled PLLs. Note, however, that for all n, we must have either b. - 0, or d. - 0. So
although the phase space appears to be 9q4, the dynamics really live on the intersection of
the two three-dimensional linear subspaces (bn - 0 and d. - 0) of 914. If we remove b. -
4n - 0 from consideration, then the dynamics live on a (disconnected) three dimensional
subset of %4. We will show how to parametrize this subspace globally by defining a new
set of variables based on linear combinations of an, bn, cn and dn.

First, we write down the evolution equations in terms of the variables in eq( 35). T and
T, are the period functions of loops 0 and I respectively, where Ti: S1 ---) 9' and ' - 9
(mod 1) - {[x] : 0: _x < 1, x - y if x - y r S }. In a real DPLL system, To(4) - Tf 0 ,4) and
T,- T(bC,4) where T: SR X S1 -- 91+, is another period function that depends on some
(static) external parameter b. The idea will eventually be to vary bo and b, for relevant T
functions and investigate the subsequent dynamics. For now, we may assume that To and
T1 are arbitrary period functions.

Writing the mapping equations is complicated by the fact that they change depending on
whether loop 0 or loop 1 samples at n+l. This situation causes the phase-space discontinu-
ity mentioned earlier. Fortunately, the variables in eq ( 35) provide a simple means for
determining which loop will sample at n+l. In particular, if an - cn < 0 loop 0 will sample
next, while if an - Ca > 0 loop 1 will sample next. In the first case (loop 0 next samples),
the next-state equations are
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an +dn')an+ 1 =: T 0( C. d

bn+I =0 (36)

cn+l =cn-an

dn + = an +dn

In the other case (loop 1 next samples) they are

an +1 =an- Cn

bn + 1= Cn + bn

/a + d (37)

dn+1 =0

Note that at all samples n, we have bn+ 1 - 0 or n+1 -0. Hence, as mentioned above, all
iterates lie in a three dimensional subspace of our four-dimensional space. We can param-
eterize this space observing that in order to evolve the above equations we need to know
only the following linear combinations of parameters:

P -(an + dn, cn + dn, cn - an, an + bn, cn + bn.

Regarding (an, bN, ca, dn I as basis vectors in ý4, we see that the span of P is three-di-
mensional. In particular,

span (a. - c., a. + b., c. + dn ) - span{P}

Hence, if we define

Xn = an -cn

Yn = an + bn (38)

Zn = Cn + dn

we may write the mapping equations in (36) and ( 37) respectively as
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x X T 1+ Xn =X+ Xn

Xn+l =Xn +TO1+ =Xn+TO-n

Yn+I =T0 1+ jX J=TojX (39)

Zn+ 1 = Zn

and

/XnnXn+l=Xn+ (-T) 1- nn = n+Tly'n

Yn+l= Yn (40)

Zn+1=T 1- =Tl

where eq( 39) is used when Xn < 0 and eq ( 40) is used when X. > 0. The second equa-
tions for X and Y in eq ( 39) and X and Z in eq (40) follow because Ti is defined on the
circle S1. Finally, we use the step function U: 9t -4-[0, 1], U(t) - 1 for t > 0, U(t) - 0 for
t < 0 to "glue" the above two equations together, yielding

Yn + I = U (Xn) Yn + U (- Xn) [In + n (41)

Zn+I =U(Xn) l +U(-Xn))(+ (+-Xn)z n

Equation eq ( 41) completely describes the dynamics of the coupled DPLL system. Of
course the state variables used in eq( 38) are not unique; we could have used any three that
spanned P. However, the ones we have used have simple physical interpretations. For ex-
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ample, the sign of Xn determines which loop (0 or 1) samples at the n+l st sample. In par-
ticular, we may define the sampling itinerary of a trajectory starting from an initial
condition S0 - (Xo, Yo, Zo} as the sequence I(SO) - {U(Xn ),n-.O,... co, where U(e) is the
step function defined above. The itinerary defined in this way records the sampling order
of a trajectory starting from the initial condition So. The Yn variable can be interpreted as
the period of loop 0 during the nth sample. If loop 0 is sampling at n, then Y. is just the
time until loop 0 will next sample. Similarly, Zn can be interpreted as he period of loop 1
during the nth sample of the system.

Several other aspects of eq( 41) are important. First, all three states are time variables, so
that the phase space is %3. More precisely, allowable iterates lie in the three-dimensional
space X < Y, -X < Z. Furthermore, there is a discontinuity in the map on the plane X-0,
which corresponds to the condition of both loop 0 and loop 1 trying to sample. Keeping
the iynamics away from X - 0 is an important requirement we shall consider later. For
now, we shall ignore this consideration. Also note that eq( 41) is invariant under the trans-
formation

Xn -4 -Xn
Yn -Zn

Zn -Yn (42)

Tn -- -T 1 -i i = 0,1

a fact which may be verified directly, but ,which is obvious from the physical interpreta-
tion of X, Y, and Z. This transformation amounts to renaming loop 0 and loop 1. Finally,
note there are no fixed points of eq (41). This may also be verified directly, but, observe
that if fixed points existed, then one loop (either loop 0 or loop 1) would sample at each n
( i.e., I(So)(n) =_ U(Xo)). But this is impossible, since we require each loop to be operating
at nonzero frequency, and we insure :his by requiring Ti > 0, i - 1, 2 on their domains of
definition.

Period-two points do exist, however. Such points have trajectories with sampling itinerar-
ies (10... }, or by the renaming transformation in eq ( 42), (01... }. So without loss of
generality, we seek period-two points whose trajectories have (10... } sampling itinerary.
Knowledge of the itinerary allows us to easily compute the 2nd iterate of eq (41) and we
find that period-two points are those X, Y, and Z which satisfy the implicit nonlinear equa-
tions
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X =T 1 (I -X) (43)

xXY = To (Z)

Z=Z

Whether solutions of these equations exist of course depends on To and T1 . We shall an-
alyze eq (43) for two cases that are found in "real" digital phase-locked loops; first,
where twle VCO oscillates with sine-wave output;

1
T (bi, ) -Ti (T ) = 1+t.sin(27rp)

and second where the VCO oscillates with a triangular-wave output

T(bi,•) -Ti() = I
I + biA (21t))

where Lambda: S1 -4 [-1,1] is the standard piccewise-linearis the standard piecewise lin-
ear triangle function..

44 0__ __ 1/4

A(ý) = 2-4ý 1/4!5 • _<3/4
4ý-4 3/4<_ _< 1

In both cases above the bi are static external parameters.
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3.4 Digital Data Transmission System Using Two Coupled DPLL

3.4.1 Introduction

It has been shown elsewhere in this report (see sections 3.1 and 3.2) that for the system of
FIGURE 32. (shown below) the output of the VCOs of the first and third DPLLs can be
synchronized in phase for all time, provided that the second loop has positive Lyapunov
exponent and the other two loops have the identical coupling coefficients with negative
Lyapunov exponents. A communication system having a similar configuration can be used
for the transmission of binary data sequences. FIGURE 33.shows one such communica-
tion system. The coupled first and second DPLLs constitutes the transmitter and the third
and fourth DPLLs make up the receiver.

FIGURE 32. A Chaotic Dynamical System Using Coupled Digital Phase Locked Loop With Second
Loop Having Positive Lyapunov Exponent

In the system of FIGURE 33. the second DPLL has its coupling coefficient set very high
so that the loop has a positive Lyapunov exponent. The value of the coupling coefficient
for the first loop is small so that the loop has a negative Lyapunov exponent. In addition,
the coupling coefficient of the first loop is made to take on two different values; one value
for the binary digit of a 1-bit, and another value for a 0-bit. Only the output of the VCO of
the second DPLL is transmitted to the receiver and provided (in identical form) as inputs
to the third and fourth DPLLs. The difference between the third and fourth DPLLs lies in
their coupling coefficients. Namely, the coupling coefficient for the third DPLL matches
that for 1-bit used for the first DPLL and that for the fourth DPLL matches that for 0-bit.
Hence, when a 1-bit is transmitted, the output of the first DPLL will be in phase synchro-
nization with that of the third DPLL. On the other hand, when a 0-bit is transmitted, the
outputs of the first and the fourth DPLLs will be in synchronization,

3.4.2 Search For A Sub-optimal Decision Variable.

A decision variable, which is to be used in determining whether the transmitted bit is a
zero or one, must be devised for this system. This variable, in the absence of thermal noise
at the input, must unambiguously extract the 1 bit or 0 bit embedded in the signal. Since
the output of first DPLL is not available at the receiver, the decision variable can only be
based on the received signal (which is the output of the second DPLL) or certain variables
related to the third and fourth DPLLs.
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FIGURE 33. A Digital Communication System Employing Coupled Digital Phase Lock Loop With
The Second Loop Having Positive Lyapunov Exponent

The decision variable is defined to be

D = Vmatched - Vmis_ matched

Where Vmatched is the measured value of a property of whichever DPLL (the third or
fourth) matched the coupling coefficient of the first DPLL, and Vmis-matched is the mea-
sured value of the same property of the remaining DPLL (whose coupling coefficient did
not match that of the first DPLL). The properties that have been investigated in this study
are:

1. Input voltages at the third and fourth DPLLs at their respective sam-
pling time instants.

2. The phase angles of the incoming signal at the third and fourth
DPLLs sampling time instants.

3. Error voltages to the VCOs of the third and fourth DPLLs at their re-
spective sampling time instants.
4. Frequencies of the third and fourth DPLLs at their respective sam-
pling time instants.

5. Voltages or phase angles of the third and fourth DPLLs at the positive
zero-crossings of the second DPLL output.
6. The first or second differences of one of the measured values of the
properties listed above. Where the first and second differences of a suc-
cessive measured values of the property, fv(-j), v(-j+ I .... v(- 1), v(O),
v(l), v(2),...), are defined below.

First Difference of v(i):
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Av(i) =v(i) -v(i- 1)

Second Difference of v(i)

A2 v(i) = v(i) -2xv(i-1) +v(i-2)

Where {v(i)) is the sampled measurement of the property (v(1), v(2),
v(3) .... ).

The result of investigation indicates that property 2 above is the most suitable one to use.
The decision variable formed from the difference between the cumulative sum of the suc-
cessive absolute values of the second differences of property 2 remains positive for all the
simulation runs independent of the initial conditions of the DPLLs. No such claim can be
made for the other decision variables.

In the process of searching for the optimum decision variable certain strange attractors
were observed. FIGURE 28.through FIGURE 31 .show the normalized phase angle versus
the frequency of the third and the fourth loops at the instant of the second loop's sampling
time. These figures are for two values of the coupling parameter of the first loop, namely
b1- 0.1 and 0.2016. The coupling parameters for the other loops were; ½2-0.55, b3- 0.1,
and b4-0.2016. It is seen that a well defined strange attractor is observed when the param-
eter value of the third or fourth loop matches that of the first loop, and the attractor be-
comes fuzzy when the parameter values are not matched.

FIGURE 32. through FIGURE 41. shows the output voltage of the third and fourth loops
at the n+lst sampling time versus the voltage of the second loop at the n-th sampling time.
Again, it is seen that it exhibits a well defined strange attractor when the parameter value
of the receiving loop matches that of the first loop. This fact could be used to advantage in
generating a decision algorithm. It is suspected, however, that the decision algorithm
based on these observations would be computationally very extensive and is therefore of
little use.
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FIGURE 34. Normalized Phase Angle Versus Frequency At the Second Loop Sampling Time For The
Third Loop; With bl- 0.1, b3-0.1
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FIGURE 35. Normalized Phase Angle Versus Frequency At the Second Loop Sampling Time For The
Fourth Loop With bl-0.1, b-0.2016
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FIGURE 36. Normalized Phase Angle Versus Frequency At the Second Loop Sampling Time For The
Third Loop With bl- 0.2016, b3 -0.1
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3.4.3 Bit Error Probability Versus Input Signal-To-Noise Ratio (SNR).

The bit error probability versus the input signal-to-noise ratio (SNR) for the communica-
tion system of FIGURE 33. was generated using a Monte Carlo method. The decision
variable based on the second difference of the sampled phase angles of the input signal to
the receiver was used. It was found that the coupling coefficients which yielded the lowest
bit error probability were: b1 - 0.1 for the 1-bit and 0.2016 for the 0-bit, and b2 - 0.55.
The number of samples accumulated - 1,000.

FIGURE 42. is a graph of the bit error probability versus input SNR resulting from the
simulation. It is noted that each of the data points is the result of transmitting a sufficient
number of random binary digits to obtain fifty (50) erroneously detected bits for the given
value of SNR. It can be seen that the bit error probability curve tends to flare out with in-
creasing value of input SNR. This seems to suggest that in order to have a bit error proba-
bility in the order of 10-6 or lower, the input SNR must be much higher than twenty (20)
dB, which is almost one order of magnitude greater than what occurs in practice for t
BPSK or QPSK signalling systems. Hence, though this digital data transmission system
may be considered an LPI communication system its power efficiency is very poor.

1. 08-01

1.0e-03

Uj1. Oe-04

. .0 9.0 10.0 11.0 12.0

Input -Signal-to-Noise Ratio (STIR), dB

FIGURE 42. Bit Error Probability Vs. Input Signal-to-Noise Ratio (SNR)

In conclusion, it is well to pointed out that the search for the optimal decision variable to
achieve minimum bit error probability for a given value of the input SNR, has not been ex-
haustive, and further investigation is warranted. Also, because the communication channel
is band-limited to have a certain frequency responsZ:, the effects of filtering distortion on
the transmitted signal need to be studied in order to determine how they may impact the
detection process.
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3.5 Communication System Using Chaotic Signals as Transmitted

Symbols

3.5.1 Introduction

In this paper we describe a communication system which uses chaotic signals as the
transmitted symbols. The system consists of two coupled DPLLs acting as a transmitter, a
modulator, a channel, an additive noise source, a demodulator, and a DPLL acting as a
receiver. The coupled loop transmitter operates in a region such that its output is chaotic.
The receiver then takes in this chaotic signal and synchronizes to it. It has been shown
previously1 in a simpler system with no channel, noise or modulation that the receiver can
synchronize to the transmitter even though the transmitter is operating in a chaotic regime.
We extend this idea in an attempt to make a realistic and realizable communications
system.

This section is divided into six parts, the first being the introduction. In section 3.5.2 the
system under study is described in detail with the reasons why particular choices were
made. Section 3.5.3 describes the mathematical models developed to study the system of
interest. Section 3.5.4 describes the simulations performed on the system and the results
obtained from those simulations. Section 3.5.5 describes the experiments performed on
the system and the results of those experiments.Section 3.5.6 contains the conclusions and
an assessment of the work under study, including directions for further study.

3.5.2 System Description

The impetus for the present work is given by Vieira et a12 . In her work she found that two
coupled DPLL's operating in a chaotic regime could synchronize with a third loop. In the
coupled loop "transmitter" one of the loops operates in an unstable mode and the other in
a stable mode, much as in the idea developed by Pecora3 . But in this case instead of a
single chaotic circuit being subdivided into its stable and unstable components she had
two circuits both of which, with the proper forcing function , can operate in a chaotic
mode independently. The receiver then, mimicking the stable loop in the transmitter,
synchronizes with the transmitter. FIGURE 43. is a block diagram of the simple system
given by Vieira. In this system Vland V3 are equal even though the system is operating in
a chaotic regime.

It should be made clear at this point that the fact that the transmitter and receiver are
composed of phase locked loops is purely incidental, other chaotic circuits which can be
subdivide into stable and unstable subsets could also have been used. The DPLL's are not
operating in a regime where they operate as standard DPLL's. Instead as stated previously
the PLL's in the transmitter together compose a single chaotic circuit, with stable and
unstable subsets. The purpose of the receiver is then to mimic the stable portion of the
transmitter, not to lock onto a specific frequency as with carrier recovery nor to
demodulate a signal such as FM.
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FIGURE 43. Simple Synchronization System With No Channel

A full description of the coupled loop system is given by Vieira et a12. A short description
will be given here. Each DPLL consists of a voltage controlled oscillator (VCO), and a
sample and hold (SH)amplifier. During operation, the VCO signals the SH to take a
sample, vin(ti), at the sampling time ti. For standard operation the sampled value is used to
control the sampling frequency of the VCO in such a way so as to decrease the phase
difference between the incoming signal and the VCO output. As a result, for a range of
parameters, there is a possibility of locked behavior when the VCO frequency adjusts
itself to the input frequency and locks to its phase, hence continually sampling at the same
point of the input periodic signal. Due to non-linearities in the system, for certain
parameter values, orbits with high period, quasiperiodic and chaotic behavior may also
appear in a single DPLL4 which is the behavior of interest for this application. The block
diagram of a single first order DPLL is given in FIGURE 44.. The coupled loop system is
then created by connecting two loops together such that the output of one is the input of
the other and vice versa. The input to the receiver is the output of the unstable loop in the
transmitter.

Vin(t)• S/I- Vin(ti)

V~v(t)

FIGURE 44. Block Diagram of single DPLL

Unfortunately the simple coupled loop system is not adequate to be a communication
system in and of itself. There is no modulation of data and channel effects are ignored.
Another problem is that synchronization is blind in the simple system in the sense that

October 18. 1991 76



even if V3 is equal to V1 the receiver would not know. This requires one of two things to
happen in a realistic communication system. Either V, must be transmitted as a reference
or some algorithm must be developed that can tell if the receiver is in lock. This section
will concentrate on the transmitted reference scheme. Work is also being performed on the
latter method and will be presented elsewhere (see section 3.4 of this report).

The transmitted reference system is composed of six main parts; transmitter, modulator,
channel, additive noise source, demodulator and receiver. FIGURE 45. is a block diagram
of the communication system.

V,F
Coupled Loop V2 -- Modulator -- o Channel
Transmitter "

•••IDemodulator Receier

AWGN

FIGURE 45. Block Diagram of General Communication System Using Coupled Loop Transmitter.

The coupled DPLLs act as the transmitter. Data is transmitted by changing the parameter
values of the DPLLs, (more about this later). Since both V1 and V2 are to be transmitted
they must be multiplexed in some manner. There are two obvious multiplexing schemes to
choose from, Frequency Division Multiplexing (FDM) and Quadrature Multiplexing
(QM).

In frequency division multiplexing the signals are mixed according to eqn( 44). Let s(t) be
the modulated signal.

s(t) = Vl(t) cos(colt+O 1) +V 2 (t) cos((0 2 t+0 2 ) (44)

Where c(a and ca2 are the carriers of V1 and V2 respectively. The bandwidths, B1 and B2,
of V1 and V2, and the carrier frequencies obey the relations,

(02- O1 > BI+2 and, w}2 > (01 o B1 I %B2, (45)
2
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These requirements insure that the spectra of Vl and V2 will not overlap. Also note that

the bandwidth B. of s(t) is governed by the relation Bs > B1 + B 2 .

In quadrature multiplexing the signals are mixed according to eqn (46).

s(t) = V,(t) cos(0t+E) +V 2 (t) sin(wot+6) (46)

Where o is the carrier frequency which obeys the relation io )> B I = B2 and the Bandwidth
of s(t) is given by Bs = B I xB 2.

The use oi quadrature multiplexing was chosen over FDM because FDM would take twice
as much bandwidth to perform the same job as in QM. Quadrature multiplexing also
makes it less apparent to the casual observer that communication is taking place. This can
be seen by a comparison between eqn( 44)and eqn( 46). Assume that the spectrum of V2 is
held constant and the spectrum of V1 changes slightly as data is modulated onto it. In
FDM all changes in the spectrum are readily apparent in the frequency band associated
with the changing signal. In QM the two signals occupy the same frequency band thus a
change in one is partially masked by the other. In an actual system V2 will not remain
constant but changes in the spectrum are still less apparent in QM than they are in FDM. A
block diagram of a quadrature multiplexer is given in FIGURE 46.. The D.C. portion of
V1 and V2 must be eliminated before the signals are mixed with the carrier or else the
transmitted signal s(t) will not be suppressed carrier.

V2 
4 X)

cos(w~t + E))St

-90 degrees

V1 r--n((tot + O)

FIGURE 46. Block diagram of Quadrature Multiplexer.

October 18. 1991 78



For the purposes of this study the channel will be modeled as an AWGN channel only.
Proakis gives an excellent and lengthy description of this type of channel, therefore it
will not be repeated here.

The demodulator is a standard quadrature demodulator. Since the transmitted signal, s(t),
is suppressed carrier the first thing that must be done is to recover the carrier. This is done
by raising s(t) to the fourth power and passing this through a narrow band pass filter at
around four times the carrier frequency. A phase locked loop is then used to recover the
exact frequency and phase of this signal. Note that this PLL is not the same as the ones
used in the transmitter and receiver, but instead a second order analog PLL. The recovered
frequency is then divided by four and used as the recovered cirrier. FIGURE 47.is the
block diagram of the quadrature demodulator. The input to the demodulator is assumed to
be a signal plus white Gaussian noise. In the demodulator the signal is split into two paths,
one gets multiplied by a cosine and the other by a sine. These signals axe t:: -n passed
through low pass filters to eliminate the double frequency comoonents. This assumes that
carrier recovery was done perfectly. The low pass filtering causes a problem. Since the
receiver must be identical to a stable portion of the transmitter, all parameters of the
receiver must match the parameters of the stable portion of the transmitter. Two of these
parameters are the amplitude and offset voltage of the input to the DPLL. Clearly after
passing through the low pass filters in the demodulators the signal will not have the same
amplitude as it had on the transmitting side. This problem is compounded by the fact that
because the low pass filters in the demodulator are not ideal the received signal's
amplitude will also vary with frequency, as the frequency goes up attenuation increases.
Since chaotic signals are wide band this is a very detrimental effect. A partial solution to
the problem is found in the addition of an automatic gain control device. Although this
device will not correct the problem of amplitudes varying with frequency it will make the
average amplitude occur at it's proper value. There is also the problem that the D.C. offset
of the receiver input must be identical to the D.C. offset of the transmitter output. This
value must be known a-priori because no D.C. is allowed to be modulated.

The receiver consists of a single DPLL mimicking the stable DPLL in the transmitter. The
input to the DPLL, r(t), is,

r(t) = V2 (t) +n(t)cos((at+E). (47)

The output of the receiver is then compared to the transmitted reference, q(t), which is,

q(t) = V, (t) +n(t)sin(ott+E). (48)

The output of the receiver, o(t), is given by,

0(t) = V'I (t) +no(t). (49)

where ý" (t) is a distorted version of the transmitted reference and n0 (t) is the noise
output of the receiver including all inter-modulations of the signal and noise input.
FIGURE 48. is a block diagram of the receiver.
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FIGURE 47. Block Diagram of the Quadrature Demodulator.

V2 +n(t)sin(cot+8) l •- DPLL

1 ' f(t) + n (t) Eosi((at

S+Detector

FIGURE 48. Block Diagram of Receiver
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3.5.3 Mathematical Models

The mathematical models used to describe this system are presented here. The algorithm
given by Vieiral is used to iterate through the equations governing the DPLL's. The
algorithm will be repeated here for completeness.

Given the frequencies o)1,,o2... on and phases 01, 02.... O0 of the VCO's at t - 0 then:

1. Initialization: Find what should have been the last sampling
time tiand the next sampling time t' for all loops
(i = 1, 2, ... n).

--0.

ti o . " (50)

2i-.
27c - 0.

t'. = (51)

2. Search over the DPLL's to find the loop I with the smallest time
for the next sampling; that is, find I such that

t' = smaller (t'.). (52)

3. Calculate the input sample value of the loop that samples.

Vi = A(i), (53)

where

* (i) = oi(t'l-ti), (54)

and AO is the triangle function for the VCO output.

4. Update the frequency of the loop I according to,

tO1 =0 t0 + blV (tl') . (55)

5. Set t, = t', and t= t + 2 x nt/(W')). Go to step 2.

Since the DPLL's are nonuniformly sampling, and filters are present in the system which
require uniform spaced sample values, an algorithm for converting from the nonuniformly
sampling time domain to uniformly sampled time domain was developed. The algorithm
works as follows.

1. Get the start time, tp, and the stop time, t',, from the algorithm
above.

2. Calculate the number of steps necessary to traverse the time
span.
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N - +1 (56)

ts

Where tr is the step size and N is the number of steps.

3. Calculate the actual uniformly spaced time values.

T. = t +Jtsfor j = 1,2...N (57)

Note that the relationship between the final time and the stop
time.

t• < TN •t' + . (58)

4. Calculate the actual values of the state variables of interest for
all Tj.

After passing through the filters the signals must be converted back into the nonuniformly
sampled time domain. This is accomplished by performing a linear first order interpolation
on the state variable of interest. Let x (tl') represent the state variable's value at the
nonuniform sampling time, and let x (TN) and x (TN_ 1) represent the value of the state
variable at the last and second to last uniform sampling point respectively. The equation
for finding x (tt') is given by,

(x(TN) -x(TN_ ) )

x (tO') X(TN -) + TN- TN - X (tl'-TN_l) (59)

All filters in this system are modelled in the Z domain. Thus they are implemented with
difference equations. (The filters were designed in the laplace transform domain and
converted to the Z domain by means of a bilinear transformation.)

3.5.4 Simulations Performed

A description of the software written will be given first. The software produces a
simulation of the system which is described in the section 3.5.2; it does this by using the
algorithms described above and by calculating the state variables (equations given in
section 3.5.3) at the appropriate times. The program was written in C on a Sun 3/60 unix
based workstation. The total number of lines of code written is 1,367.

The program is set up as follows. It consists of eight source files which are compiled
together to create one executable file. Along with these eight source files there is one input
file. The input file consists of all of the parameters in system that one would wish to
change while investigating the system. The input file also contains the control statements
for the output. The user indicates which signals are to be output to a file and how much of
the signal is going to be stored. There are a total of fifteen possible output files. Among the
variables that are able to be stored are; the outputs of the transmitter, the outputs of the
modulator, the output of the noise source, the outputs of the demodulator before and after
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the AGC's, and the output of the receiver. The output is stored in a two column format
with time in the first column and the state variable in the second column. These outputs
may then either be plotted or some post-processing performed. The post-processing
includes fourier transformations and the determination of Lyaponov exponents.

There were several steps in the simulation process. First, the coupled loop system, as
shown in FIGURE 43., with no channel, modulation, or noise was simulated. As expected,
synchronization was obtained between V1 and V3 even though the coupled DPLLs were
operating in a chaotic regime. Synchronization is shown in FIGURE 49. while FIGURE
51 .shows the spectrum of the chaotic signal. Next the outputs of the transmitter were
transformed into the uniformly sampled time domain and then back into the nonuniformly
sampled time domain before entering the receiver. This has the effect of adding on a small
amount of noise to the received signal. Once again synchronization was obtained between
V, and V,. This is shown in FIGURE 50.

Finally the modulator and demodulator were added into the system, but, carrier recovery
was not performed. In this case synchronization was not obtained. The reason was because
the low pass filters smoothed the triangle wave and, as described previously, amplitude
modulated it also. Thus the tips of the triangle were clipped and the peaks were not of the
same height. FIGURE 52. is a graph of the input to the modulator and the output of the
demodulator. It also shows the output of the demodulator after it, has passed through an
automatic gain control device. The receiver DPPL's output, now with the distorted input,
did not match the transmitted reference, see FIGURE 54..

S//

0.75

V-1

0.5

0.25

0 I I

0 0.25 I 0.5 0.75

FIGURE 49. Synchronization or Simple Coupled System
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FIGURE 51. Spectrum of Transnitted Signal When System Is Operating In a Chaotic Mode.
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FIGURE 54. Receiver Output Versus Transmitted Reference

3.5.5 Experiments Performed

The experiments performed so far are all on the simple coupled loop system. That is two
DPLL's in the transmitter and one in the receiver, as shown in FIGURE 43..The schematic
of a single DPLL is given in FIGURE 55.. The circuit is composed of two main parts: (1)
the sampler and associated support circuitry and (2) the VCO and associated circuitry. For
the sampler a National Semiconductor LF398 Monolithic Sample and Hold circuit is used.
An 0.001 pxF polystyrene capacitor is used for its low dielectric loss properties as the hold
capacitor. The sample time is set by a 74LS 123 re-triggerable monostable multivibrator.
The pulse width of the multivibrator is set with Rext - 20 kW and Cext - 680 pF which
gives a predicted pulse duration of about 6.7pgs and a measured pulse duration of about 6.0
iLS. The maximum frequency of the input signal is about 4kHz. Therefore, our sampling
duration is about 2.4% of the signal period in the worst case and less than 2% on average.
Hence, our sampling error should be much less than 2%.

For the VCO a National Semiconductor LM566 Voltage Controlled Oscillator integrated
circuit is used. The frequency of the VCO is given approximately by the formula

2.4 (V+ - v5)

f R ,CIV (60)
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where V" = 5V, v5 is the control voltage input (the voltage on pin 5 minus the voltage on
pin 1 of the integrated circuit), RI - 10klO and CI - O.022;,F.

Due to the relatively loose tolerances of RI and C1 and the temperature dependance of
these components, equation (60) is useful primarily for design purposes. The center
frequency and gain of such a DPLL, which obeys f = fo + bv, with v being referenced to
zero, were obtained from a linear least squares fit of the data, and it was found that f0 -
5259.1Hz and b - 1217.4 Hz/V for the voltage range we use. The output of the VCO has
an amplitude of 0.9 V and a D.C. offset of -0.9 V. To use this VCO in a DPLL it is
necessary to add D.C. offset voltage either to the input signal of the sampler or to the
output of the sampler so that the input signal to the VCO will be in the proper voltage
range. The operational amplifier circuit shown in figure seven is used to adjust the offset
voltage. A hard limiter LM3 11 with a reference of -0.9 V was included at the triangle
wave output of the VCO to cause sampling at the zero crossing, as opposed to sampling at
the peak, as in the case of the circuit studied in Ref. 4.

Bernstein4 has shown that a single DPLL can be forced into chaotic regime with a
sinusoidal input. In this experiment instead of a sinusoidal input to the DPLL we couple
two loops together so that the output of one is the input to the other. The parameter used to
control the behavior of the experimental system is the input offset voltage of the VCO. We
experimentally verify that this circuit can operate in a chaotic regime. The verification of
this is not stringent. We do not measure Lyaponov exponents of any of the experimental
signals. Instead we look at the spectrum of the output of one of the loops. When the
spectrum of the loops output is observed to be wide and noise like in nature we consider
the loop to be operating in a chaotic regime. As opposed to this when operating in a
periodic regime one sees only a fundamental and few harmonics on the spectrum analyzer.
Other more complicated spectrums also emerge that are clearly not chaotic.FIGURE 56. is
the spectrum of the transmitted signal when the system is operating in a chaotic mode.
While is the spectrum of the transmitted signal when operating in a period two mode, i.e.
the transmitted signal jumps back and forth between two distinct periods. The case when
the signal is periodic is not shown

While operating in a chaotic regime, synchronization was obtained as shown in FIGURE
58.. The output voltage of thestable DPLL in the transmitter (x axis) is plotted versus the
output voltage of the receiver (y axis)
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3.5.6 Conclusions

The results from the experimental circuits are encouraging. For the coupled loop system

with no channel, modulation, or noise, synchronization is obtained. This is promising

because no particular care was taken in assuring that all parts in the receiver and

transmitter were matched. The resistors used have a tolerance of 1% and the capacitors a

tolerance of 5%. The integrated circuits used were all of the low grade commercial type,

not the high A grade commercial or military versions. So clearly the stable DPLL in the

transmitter and the DPLL in the receiver will not exactly match.

The results from the simulations are also encouraging. As mentioned in the simulations

section synchronization is not obtained between the output of the receiver and the

transmitted reference. This problem is not as severe as it may sound. The solution is two-

fold. First abandon the use of the triangle wave output VCO's and use sine wave output

VCO's instead. This would help solve the problem of the low pass filters in the

demodulator smoothing out the signal. The LPF's cut out the harmonics of the triangle

wave but with sine waves this should not be a problem. Changing to sine wave output

VCO's would also mean that a new circuit has to be made or the present one modified.

Second an amplifier should be added directly after the LPF's in the demodulator. The
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amplifier would have unity gain for all frequencies except for those in the passband of the
LPF's. There the amplifier should have a gain of one over the gain of the LPF. In this way
all frequencies enteriog the AGC will have approximately the same amplitude.

The lock detector in the receiver also must be designed so that data may be transmitted.
First a slight change to the receiver must be introduced. The receiver must now consist of
two DPLL's, one matched to receive a " 1 " and the other matched to receive a "0". To
clarify this; the transmitter will send bits at a given bit rate by changing the input offset
voltage of the VCO in the stable DPLL between two values. The two DPLL's in the
receiver each are matched to one of these values. The lock detector will operate by finding
the difference in energy between the output of each DPLL and the transmitted reference.
These two values will then be subtracted to obtain the decision variable. The sign of the
decision variable will determine which bit was sent. FIGURE 59. illustrates this scheme.
After the system is operating properly with the modulator and lock detector in place, the
noise source will be introduced.

Signal DPLL "I"

Transmitted Reference Lock

Detector "0"

FIGURE 59. New Bit Detection Scheme
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3.6 Experimental Realization Of Synchronization To A Chaotic Signal

The foundations for much the current work of our group on coupled phase lock loops has
been G. Bernstein's thesis (ref 1), in which the chaotic behavior of a single digital phase
lock loop fed with an external signal is described. The simple circuit described in the ref-
erence consists of an external input to a sample and hold circuit whose output, after being
offset with an operational amplifier, feeds into a voltage controlled oscillator (VCO)
which then retriggers the sample and hold circuit. The circuit itself has only one adjustable
parameter, a potentiometer controlling the offset voltage provides a way of changing the
behavior of this circuit. The only other factor which changes the circuit's behavior is the
amplitude of the input waveform, which can be adjusted externally.

Because the proposed communications system uses two coupled phase lock loops as a
central transmitting element, the proper functioning of this communications system de-
pends on understanding the dynamics of the coupled loops. The dynamical equations con-
tain four parameters. The values of these parameters will determine the behavior of the
two loops. For some sets of values the two loops will be locked together each producing
the same periodic output. When adjusted to a different set of values, the output of the two
loops might seem chaotic. It is essential to know the behavior of the loops as a function of
these four parameters so that a good operating point can be chosen; one where the signal
can be efficiently incorporated and yet remain hidden.

Each of the four mathematical parameters in the equations should correspond physically
to a way of adjusting the circuit. Simply putting two of the circuits described in reference
1 together leaves only two ways of tuning the circuit; the offset voltages of either loop can
be adjusted independently of one another. The second two parameters correspond to the
external adjustment of input amplitude in the circuit described by Bernstein. This addi-
tional degree of control, which had been external to the single PLL circuit before, now had
to be incorporated in to the coupled loops. Adding two new potentiometers gave complete
control over the circuit.(See figure 1) This new degree of freedom allowed tentative con-
firmation of computer simulations described in reference 3. (see figures 2 &3) Distinct
similarities can be observed between simulation and experiment. Both graphs exhibit a
shift in phase from 0.25 to 0.75 which occurs at B of 0.2. Both also undergo a birfurcation
near B of 0.5.
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The experiments were performed by manually scanning through a variety of circuit pa-
rameters. Automation of the adjustment process would reduce the time taken to tune the
circuit and take a measurement. A personal computer and some external circuitry provides
an implementation of automation and an easy way of conducting a scan across many oper-
ating points. In addition taking data with a computer allows one to analyze the data using
Poincare sections, mutual information studies, and measurement of Lyaponov exponents.
Using the circuitry described in figures 4 and 5 the PLL loops were configured and mea-
surements taken of the phase relationships between the signals. Software has yet to be
written which will affect the performance of the other analysis. The computer has been
used to make many scans which again agree qualitatively with simulations. (see figure 6)
This graph has the same characteristics as the previous ones, the transition from a phase of
0.25 to 0.75 and the birfurcation. This scan however is at much higher resolution, took less
time, and can quantitatively capture the chaotic regime.

REFERENCE 1. G. Bernstein, Nonlinear Oscillation, Synchronization and Chaos; Thesis
University of California, Berkeley (1988)
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3.7 A Novel Method For The Generation Of Pseudo Noise Sequences

3.7.1 INTRODUCTION

In spread spectrum systems, the pseudo-noise (PN) codes needed for signal spectrum
spreading are, in general, generated from n-stage shift registers with either linear or non-
linear feedback. FIGURE 66. below shows such a device. It is a finite state machine con-
sisting of n consecutive 2-state memory units regulated by a single clock. At each clock
pulse, the state(I or 0) of each memory stage is shifted to the next stage in line, and the
value of the Boolean function f({x}) becomes the new state for the first stage while the
content of the last stage is outputted to generate the PN sequence

Clock Signal

/ N

Xn Output
X , X2 X3"X-1 °

PN Sequence

Sf(Xl' X2' X3 X)...... Xn

FIGURE 66. Feedback Shift Register For Generation of Pseudo-Noise Sequence.

It is obvious that the sequence generated by the n-stage shift register with feedback is peri-
odic whose period can not be longer than 2n. It is well known that sequences of length 2 n-
1 can always be obtained from an n-stage register by mean of a feedback logic consisting
entirely of modulo-2 additions (or linear logics, as they are also called). The number of
linear logic functions yielding the maximum length of 2n- 1 is known to be exactly r(2n-
1)/n, where r is Euler's function and is approximately equal to 2n for large n. When the re-
striction of the feedback logic being linear is removed, the number of maximal-length shift
register codes of degree n is increased to exactly 22-- '/2. This astronomical increase in
the number of good codes leads many researchers to search for practical nonlinear shift
registers. It is well to point out, hnwever, that the period of these sequences is still limited
to 2"- 1, where n is the stages of the register. (See [1].)
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In this section we present a circuit consisting of N first order digital phase-locked loops
(DPLL's) connected in a ring configuration with one of the PLL's having a positive Ly-
apunov exponent as shown in FIGURE 67.below. Where each of the digital phase lock
loop consists of a phase detector, and a voltage-controlled oscillator or an A/D converter

DPLLI DPLL2  DPLL3 -... .......... DPLL12. 1  DPLL,

ClockSa peSignal -- Sape

Random Binary
Sequence

FIGURE 67. A Pseudo-Noise Sequence Generator Employing N Digital Phase Locked Loops (DPLLs)
Connected in Ring Configuration With the n-th DPLL Having Positive Lyapunov Exponent

and a number-controlled oscillator (NCO) as shown in FIGURE 68. The output of any one
of the DPLLs in the circuit is then be sampled at a rate equal to a small fraction, say 0.1, of
the nominal frequency of the DPLLs, and each of the samples are quantized into a binary
digit of 1 or 0, depending on the sample being positive or negative, respectively. The bina-
ry sequence so generated has the potential of being truly random with a long period. In the
sections to follow, the operations of the circuit is described in detail and an algorithm is
,)resented by which two identical circuits can be brought into synchronization, both for the
clock signals and code phases. Also presented are the simulation results giving the proper-
ties of these sequences, including statistics on 0/I balance, run lengths, auto-correlation
and cross-correlation histograms.

3.7.2 A Novel Method for Generation of PN Sequences

In FIGURE 67. each of the digital phase-locked loops (DPLL's) is a digital processor per-
forming the same functions as that of a first order analog phase locked loop. The loop con-
sists of a sampler, an A/D converter, and a number controlled oscillator (NCO) as shown
inFIGURE 68.(b). The nominal frequency of the NCO is 2nrfo radians per second when the
external control voltage is zero, and its output is a sinusoid. The instantaneous frequency
of the NCO is up-dated whenever its output has zero value with positive slope.
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(a). Using Voltage-Controlled Oscillator.

SSample &
Hold

Voltage Controlled
Oscillator

(b). Using Number Controlled Oscillator.

Hold Converter

Number Controlled _
Oscillator

FIGURE 68. First Order Digital Phase Lock Loop

The new frequency of the i-th loop is given by

oa(ij) = 2rfo +b(i,i-1) x sin [k (i- 1,j) xt(i,j) +ý(i-1)]

for i - 2, 3, and

(o(1,j) = 2ntfo+b(1, n) x sin [(0(n,j) xt(1,J) +ý(n)]

Where:

b(ij) - coupling coefficient between the i-th and j-th loops,

g(i,j) - the angular frequency of the i-th loop at the j-th sampling instant,

fo- the nominal frequency of the NCO's, in Hz,

t(ij) - the j-th sampling time for the i-th loop,
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and

V(i) - the initial phase angle of the i-th loop output.

The sampler of the i-th DPLL would sample the input voltage from the (i - 1st) DPLL at
the above-described time instant, the sampled voltage is quantized into M-bit word, and
the M-bit binary word is fed to the input of the NCO to cause a change of its frequency.
Therefore, the frequency of each NCO changes every time it has produced one cycle of si-
nusoidal signal.

The clock signal, whose period is nearly one order of magnitude shorter than the nominal
periods of the DPLLs (i.e. 1/f0), is used to clock the output of any one of the DPLL's to the
1-bit quantizer, and produce, at the quantizer's output, a binary sequence.

Note that the system of FIGURE 67. is similar in structure to the system of shift registers
with feedback depicted in FIGURE 66. Both systems are finite state autonomous machines
with the code period of the binary sequence generated by the feedback shift register being
limited by the stages in the system. However, by replacing the two-state memory units by
DPLLs and properly choosing the coupling coefficients (the bs), it is possible to have the
second system behave as a chaotic system. As a consequence, the binary sequences so
generated could be completely random, with periods of nearly infinite duration. Further
the period would be independent of the number of DPLL's in the system, provided that the
system contains at least two DPLL's and one of the DPLL is operated in a chaotic mode
(i.e. having a positive Lyapunov exponent). If the sequences so generated are to be truly
random, they must have the following properties:

1). The number of l's and O's in a sequence be nearly the same,
i.e the probability of 1's and the probability of O's in the se-
quence each be nearly equal to 0.5.

2). Runs of consecutive 1's or of consecutive O's frequently oc-
cur, with short runs being more frequent than long runs. More
precisely, about one-half the runs should have length 1, one-
fourth should have length 2, one-eighth should have length 3,
etc.

3). The auto-correlation functions of the sequences should have
value of 1 when code phase shift is zero and nearly 0 when the
shift is non-zero. That is to say: If we let {am} - (a1 , a2, a3 ,....
be a binary sequence, and the auto-correlation function of the
sequence, A(k), is defined as

M
A k im a. ami+k

M-ý= Imam+k
A~k)= =--- I

Then the desired property of the sequence is that the value of
A(k) be 1 for k - 0 and very small for all other values of k.
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4). The cross-correlation function of two different sequences
should be nearly equal to zero for all code phase shifts. If we let
(am) - {a,, a2, a3 .... } and {bm} - {b 1, b2, b3 .... } be two differ-
ent binary sequences, and the cross-correlation function of the
two sequences is defined as

M

C(k) =lim ambm+k
m=l

Then C(k) measures the amount of similarity between the two
sequences, for all values of code phase shifts.C(k) should be
very small for all integer values of k, including k equal to zero.

It shall be shown later that the sequences generated by the DPLL's connected in the ring
configuration have all the properties given above.

3.73 An Algorithm for Synchronization of Two Identical Chaotic Systems.

The chaotic system described in section 3.7.2 for generating PN sequences for use in a
spread spectrum communication system is useful only if the PN code can be reproduced
exactly. This includes perfect code phase synchronization by another (identical) system
used as a PN code generator, at a receiver, for the purpose of PN code despreading. Given
below is a method by which two identical chaotic systems can be made to synchronize to
each other.

The two systems are initially set to have identical initial conditions, i.e. the corresponding
DPLLs in both systems are to have the same initial frequencies and phase angles. Let the
first system to be the one generating the transmitting PN code, and the second system is to
generate a binary code sequence in synchronization with the transmitted code. Initially, the
first system is to repeatedly generate a code sequence of Nw code chips by resetting the
system to its original initial conditions right after generating Nw code chips. In the mean-
time, the second system also generates Nw code chips. It performs cross-correlation of the
received code sequence and its own generated code chips, using Nw parallel digital pro-
cessors for each of the Nw different code phases. It seeks the particular code phase that
gives the maximum correlation value. The peak correlation value will be initially quite
small because two clock signals are likely to be out of synchronization. Next, the receiv-
er's clock signal is advanced by 'x' percent of the clock period, and another sequence of
Nw code chips is generated, cross-correlation of the two sequences is again performed,
and the code phase with the largest correlation value is identified. The two correlation
peaks are compared and the one with the largest value with its corresponding code phase
position is retained. This process is repeated until the phase of the receiving clock signal is
advanced by one period. By this time, the code phase synchronization would have been
achieved with the two clock signals being out of phase by no more than one half of 'x'
percent of the period of the clock signal, provided that the clock signal phase error is suffi-
ciently small. A second pass of the clock phase search may be required. This could be
done by advancing the receiving clock signal phase by one-tenth of the original time in-
crement around the correlation peak time instant obtained in the first pass. This process is
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continued until the correlation peak exceeds a certain threshold value, at which time both
clock signal phase and code phase synchronizations would have been achieved. Soon after
the correlation peak exceeds the threshold setting, the transmitter is signalled by the re-
ceiver to this effect and both PN code generating systems are turned into normal operating
mode. At the same time the receiver is switched from the acquisition mode to a tracking
mode and normal data transmission can be initiated.

It takes NwTc seconds to perform correlation of Nw chips, where Tc is the code chip time
interval. Hence, it takes 100NwTc/x seconds to complete the first pass of the clock phase
search over one clock period. In the second and subsequent passes, however, it should take
no longer than 2 0NwTc second to complete a pass. This is because the clock phase search
time interval has been narrowed down to within twice the previous search time increment.
This assumes that the increment is reduced by a factor of 10 in each of the successive
passes.

It is well to point out that in order to minimize the probability of false synchronization and
to maximize the probability of correct synchronization, a more elaborated scheme such as
multiple sequential detection method must be used. See reference [2] for additional infor-
mation.

In the simulations of the acquisition and synchronization of the transmitting and receiving
PN codes, to be detaiicl in the next section, it has been found that no more than three (3)
passes were required to achieve synchronization. Synchronization was considered to have
occurred when the correlation peak was greater than 0.99. During these simulations the in-
put signal- to-noise ratio (SNR) was -10 dB or higher. The correlation window, N., was
equal to (or longer than) 512 code chip, and the initial clock signal phase search incre-
ment, AT., was no greater than one (1) percent of the clock signal's period, i.e., ATs
<.01Tc.

3.7.4 Simulation Results.

In order to investigate the prolerties of random sequences generated by the system of
FIGURE 67., simulations were performed for systems with two (2) or four(4) DPLLs. Se-
quences of lengths nearly equal to 250,000 code chips, for various coupling coefficients,
were generated. In all cases, the DPLL with the highest index was the one having positive
Lyapunov exponent i.e. was operating in a chaotic mode. All the other DPLLs had nega-
tive Lyapunov exponents and were thus operating in stable regions. The nominal frequen-
cies of the NCO's were all taken to be one (1) radian/second, and, consequently, the clock
signal period were in the range of 40 to 100 seconds.

The next few subsections contain details of the simulation results. This includes; correla-
tion peaks versus the clock phase (timing) error, synchronizations of code and clock phas-
es, statistics of OIA balance, run length, and auto-correlation and cross-correlation of
various code sequences generated from the output of the DPLL with positive Lyapunov
exponent. The simulations were performed using the following set of system parameters.
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2-DPLL System:

Code No. 1: bI - .32, b2 - .65, and clock period - 70 seconds

Code No. 2: b1 - .37, b2 - .63, and clock period - 70 seconds

4-DPLL system:

Code No. 3: b, - .32, b2 - .28, b3 - .24, b4 - .67, and clock period - 70 seconds

Code No. 4: b1 - .31, b2 - .28, b3 - .24, b4 - .67, and clock period - 45 seconds

Code No. 5: b, - .32, b2 - .25, b3 - .20, b4 - .67, and clock period - 45 seconds

Code No. 6: b1 - .32, b2 - .25, b3 - .20, b4 - .67, and clock period - 70 seconds

These parameter sets were chosen for the purpose of determining whether the generated
codes have good auto-correlation and cross- correlation properties. Because of this some
of the parameter sets are very nearly the same.

Correlation Peaks versus Clock Phase (Timing) Error

FIGURE 69. through FIGURE 80. show graphs of the positive and negative correlation
peaks versus the normalized clock timing error. The number of code chips being correlat-
ed, i.e., the correlation window, was either 512 or 1024 chips and there were various val-
ues of clock's signal period. In all cases shown, the input signal-to-noise ratio (SNR) is 50
dB or higher and, therefore, can be considered to be noiseless. It is seen that the positive
correlation peak of unity always occurs when both code and clock signal phases are in per-
fect synchronization. However, when the clock phase (timing) error is non-zero, the corre-
lation peak can occur at places where the code phase errors may be non-zero.

FIGURE 69. and FIGURE 7 l.show the positive and negative correlation peaks vs. clock
phase error for the 2-DPLL system where the binary code sequence is generated from the
output of the DPLL with positive Lyapunov exponent (the second DPLL). FIGURE 70.
and FIGURE 72. are for the cases where the ccode sequence is generated from the output of
the DPLL with negative exponent (the first DPLL). It is seen that the code sequence gener-
ated from the second DPLL gives only one positive correlation peak at zero clock phase
error and two negative correlation peaks at clock signal phase error of about one-tenth of
the clock period. For the code sequence generated from the first DPLL, however, it is seen
that there is a positive correlation peak of unity at the zero clock phase error in addition to
many other local peaks at places where clock phase error is non-zero. This sequence gives
two dominant negative peaks at two values of clock phase errors whose absolute values
are equal to one-tweitieth of the clock period, and many other side lobes. This peculiar
phenomenon is also observed for the 4-DPLL system. (See FIGURE 73.to FIGURE 80.).
From these observations we can conclude that the code sequences generated from the out-
put of the chaotic DPLL has better correlation properties thus preventing the system from
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falsely locking into the local positive peak during the acquisition phase, and consequently

requiring a shorter acquisition time.]
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FIGURE 69. The Correlation Peaks Versus the Clock Phase Error of the Code Sequence Generated
From the Output of the Second DPLL of the 2-DPLL System bl- .32, b2-0.65, and Clock Period- 60

seconds. [Correlation window - 512 code chips.

FIGURE 81. through FIGURE 84. show the expanded version of FIGURE 69., FIGURE
71., FIGURE 73., and FIGURE 75., respectively, near the zero clock phase error. It is seen
that in order to have the positive correlation peak remaining greater than 0.8, the clock
phase error must be kept to within one (1) percent of the clock period. Hence, in the pro-
cess of establishing code and clock signal phase synchronizations with input thermal
noise, the clock timing should be advanced by an increment no larger than 0.01 times the
clock period so that the desired synchronizations can btv , -hicved within a few passes us-
ing the algorithm described in section 3.7.3
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FIGURE 70. The Correlation Peaks Versus the Clock Phase Error of the Code Sequence Generated
From the Output of the First DPLL of the 2.DPLL System With b1-.32, b2-. 65, and Clock Period - 60

Seconds. (Correlation window - 512 code chips.
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FIGURE 71. The Correlation peaks Versus the Clock Phase Error of the Same Code Sequence of
FIGURE 69.ICorrelation window - 1,024 code chips.
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FIGURE 72. The Correlation Peaks Versus the Clock phase Error of the Same Code Sequence of
FIGURE 70.tCorrelation Window - 1,024 code chips
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FIGURE 73. The Correlation Peaks Versus the Clock Phase Error of the Code Sequence Generated
From the Output of the Fourth DPLL of the 4-DPLL system with bl- .32, b - .28, b3- .24, b4- .67,

and Clock Period- 70 seconds. [Correlation Window- 512 coe chips.
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FIGURE 74. The Correlation peaks Versus the Clock Phase Error of the Cnde Sequence Generated
From the Third DPLL of the 4-DPI.L System with bl- .32, br- .28, b3- .24 67, and Clock Period

- 70 seconds. I Correlation window-51 2 code chip
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FIGURE 75. The Correlation Peaks Versus Clock Phase Error of the Same Code Sequence of
FIGURE 73.[Correlation window = 1,024 code chips.
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FIGURE 76. The Correlation Peaks Versus the Clock Phase Error of the Same Code Sequence of
FIGURE 74. (Correlation window - 1,024 code chips.
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FIGURE 77. The Correlation Peaks Versus Clock Phase Error of the Same Code Sequence of Figure
4.1.5 Except the Clock Period- 45 Seconds. [Correlation Window - 512 code chips.
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FIGURE 79. The Correlation peaks Versus the Clock Phase Error of the Same Code Sequence or
FIGURE 77. [Correlation Window- 1,024 code chips.
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FIGURE 80. The Correlation Peaks Versus Clock Phase Error of the Code Sequence of Figure 4.1.10.
[Correlation window- 1,024 code chips.
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FIGURE 81. Expanded Version of FIGURE 69..
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FIGURE 82. Expanded Version of FIGURE 71.
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FIGURE 83. Expanded version of FIGURE 73.

3.7.5 Run Length And 0/1 Balance Properties Of Code Sequences

Given in this section are the run-length and 0/1 balance properties of the code sequences
described in Section 3.7.4. All the sequences are generated from the 2-DPLL or 4-DPLL
system with code length of 218 - 262,144 code chips. Each of the sequences have been
checked to determine if the entire sequence contains subsequences of period 2m for m be-
tween 9 and 17. No subsequences of such periods have been found and, therefore, it is rea-
sonable to conclude that the sequences generated by these systems can have periods much
longer that 218 code chips.

Tables 1 and 2 give the 0/1 balance and run length properties of the Codes No.1 and No.2
sequences generated from the output of the DPLL with positive Lyapunov exponent of
the2-DPLL system. It is seen that these sequences have nearly balanced 1- and 0-bit, and
their run lengths are very close to the ideal cases

.Tables 3 through 6 show the 0/1 balance and run length properties of Codes No.3 through
No.6 sequences generated from the DPLL with positive Lyapunov exponent of the 4-
DPLL system. Again, it is seen that the 0/1 balance of these sequences are nearly perfect.
The run lengths for the sequences deviate from the ideal by no more than 10 percent for
shorter run lengths of up to twelve (12) consecutive 0 or I code chips, and they differ from
the ideal by as much as 100 percent for run lengths of sixteen and seventeen.It is well to
point out, however, that probabilities of such long run lengths are of the order of ten to the
negative 5 (10"5).
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Table I. 0/1 Balance And Run Length Statistics of the Code No. 1.

1/0 Balance - 0.5003/0.4997

Run Length Consecutive Consecutive Total Ideal
1-Bit 0-Bit

1 0.2485659 0.2494773 0.4980432 0.5000000
2 0.1253398 0.1244438 0.2497836 0.2500000
3 0.0631371 0.0626852 0.1258223 0.1250000
4 0.0315839 0.0315992 0.0631830 0.0625000
5 0.0154013 0.0160447 0.0314460 0.0312500
6 0.0077428 0.0079572 0.0157000 0.0156250
7 0.0039824 0.0039365 0.0079189 0.0078125
8 0.0021674 0.0019682 0.0041356 0.0039062
9 0.0010952 0.0007965 0.0018917 0.0019531
10 0.0004748 0.0005361 0.0010109 0.0009766
11 0.0002527 0.0003063 0.0005591 0.0004883
12 0.0001379 0.0001379 0.0002757 0.0002441
13 0.0000460 0.0000613 0.0001072 0.0001221
14 0.0000306 0.0000077 0.0000383 0.0000610
15 0.0000077 0.0000153 0.0000460 0.0000153
17 0.0000077 0.0000000 0.0000077 0.0000076
18 0.0000000 0.0000000 0.0000000 0.0000038
19 0.0000077 0.0000000 0.0000077 0.0000019

Table 2.0/1 Balance and Run Length Statistics of Code No. 2.

1/0 Balance - 0.5001/0.4999

Run Length Consecutive Consecutive Total Ideal
1-Bit O-Bit

1 0.2584428 0.2577482 0.5161911 0.5000000
2 0.1283514 0.1288120 0.2571633 0.2500000
3 0.0591783 0.0593246 0.1185029 0.1250000
4 0.0279514 0.0286241 0.0565755 0.0625000
5 0.0136430 0.0133579 0.0270009 0.0312500
6 0.0064633 0.0065071 0.0129704 0.0156250
7 0.0032609 0.0029319 0.0061927 0.0078125
8 0.0014330 0.0014038 0.0028368 0.0039063
9 0.0006434 0.0007458 0.0013892 0.0019531

10 0.0003217 0.0002925 0.0006142 0.0009766
11 0.0001828 0.0001024 0.0002851 0.0004883
12 0.0000512 0.0000804 0.0001316 0.0002441
13 0.0000439 0.0000366 0.0000804 0.0001221
14 0.0000000 0.0000146 0.0000146 0.0000610
15 0.0000146 0.0000000 0.0000146 0.0000305
16 0.0000219 0.0000073 0.0000292 0.0000153
17 0.0000000 0.0000000 0.0000000 0.0000076
18 0.0000000 0.0000073 0.0000073 0.0000038
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Table 3.0/1 Balance and Run Length Statistics of Code No. 3.

1/0 Balance - 0.4997/0.5003

Run Length Consecutive Consecutive Total Ideal
1-Bit 0-Bit

1 0.2549238 0.2547058 0.5096296 0.5000000
2 0.1230869 0.1235980 0.2466849 0.2500000
3 0.0623252 0.0613480 0.1236732 0.1250000
4 0.0304372 0.0307304 0.0611676 0.0625000
5 0.0148766 0.0151923 0.0300689 0.0312500
6 0.0069609 0.0073518 0.0143128 0.0156250
7 0.0037812 0.0035030 0.0072842 0.0078125
8 0.0018116 0.0017665 0.0035782 0.0039063
9 0.0009096 0.0008570 0.0017665 0.0019531

10 0.0005187 0.0004435 0.0009622 0.0009766
11 0.0001879 0.0003007 0.0004886 0.0004883
12 0.0000827 0.0000902 0.0001729 0.0002441
13 0.0000451 0.0000451 0.0000902 0.0001221
14 0.0000150 0.0000376 0.0000526 0.0000610
15 0.0000000 0.0000000 0.0000000 0.0000305
16 0.0000301 0.0000000 0.0000301 0.0000153
17 0.0000000 0.0000150 0.0000150 0.0000076
18 0.0000075 0.0000075 0.0000150 0.0000038
19 0.0000000 0.0000075 0.0000075 0.0000019

Table 4. 0/1 Balance and Run Length Statistics of Code No. 4

1/0 Balance - 0.5019/0.4981

Run Length Consecutive Consecutive Total Ideal
1-Bit O-Bit

1 0.2367366 0.2388648 0.4756015 0.5000000
2 0.1258531 0.1247810 0.2506341 0.2500000
3 0.0649108 0.0650148 0.1299255 0.1250000
4 0.0348356 0.0348436 0.0696792 0.0625000
5 0.0178819 0.0176658 0.0355477 0.0312500
6 0.0092970 0.0091370 0.0184339 0.0156250
7 0.0048565 0.0044405 0.0092970 0.0078125
8 0.0028563 0.0024403 0.0052966 0.0039063
9 0.0013121 0.0012881 0.0026003 0.0019531

10 0.0006961 0.0008161 0.0015122 0.0009766
11 0.0003520 0.0004480 0.0008001 0.0004883
12 0.0001840 0.0001120 0.0002960 0.0002441
13 0.0000800 0.0000800 0.0001600 0.0001221
14 0.0000880 0.0000320 0.0001200 0.0000610
15 0.0000240 0.0000240 0.0000480 0.0000305
16 0.0000080 0.0000080 0.0000160 0.0000153
17 0.0000080 0.0000000 0.0000080 0.0000076
18 0.0000080 0.0000000 0.0000080 0.0000038
19 0.0000080 0.0000000 0.0000080 0.0000019
20 0.0000000 0.0000080 0.0000080 0.0000010
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Table 5. 0/1 Balance and Run Length Statistics of Code No.5.

1/0 Balance - 0.4994/0.5006

Run Length Consecutive Consecutive Total Ideal
1-Bit 0-Bit

1 0.2458765 0.2454110 0.4912874 0.5000000
2 0.1261114 0.1246140 0.2507254 0.2500000
3 0.0627803 0.0640061 0.1267864 0.1250000
4 0.0315220 0.0326625 0.0641845 0.0625000
5 0.0166571 0.0165252 0.0331823 0.0312500
6 0.0084566 0.0081152 0.0165718 0.0156250
7 0.0043679 0.0021723 0.0041740 0.0039063
9 0.0011637 0.0010784 0.0022422 0.0019531

10 0.0004655 0.0006672 0.0011327 0.0009766
11 0.0002327 0.0002405 0.0004733 0.0004883
12 0.0001784 0.0001086 0.0002871 0.0002441
13 0.0000621 0.0000698 0.0001319 0.0001221
14 0.0000543 0.0000310 0.0000853 0.0000610
15 0.0000310 0.0000155 0.0000465 0.0000305
16 0.0000155 0.0000000 0.0000155 0.0000153
17 0.0000233 0.0000078 0.0000310 0.0000076
18 0.0000000 0.0000078 0.0000078 0.0000038
19 0.0000000 0.0000078 0.0000078 0.0000019

Table 6. 1/0 Balance and Run Length Statistics of Code No. 6

1/0 Balance - 0.4993/0.5007

Run Length Consecutive Consecutive Total Ideal
1-Bit 0-Bit

1 0.2528581 0.2530915 0.5059496 0.5000000
2 0.1255893 0.1238044 0.2493937 0.2500000
3 0.0617478 0.0628323 0.1245801 0.1250000
4 0.0308626 0.0308852 0.0617478 0.0625000
5 0.0146782 0.0149041 0.0295823 0.0312500
6 0.0072374 0.0073655 0.0146029 0.0156250
7 0.0034944 0.0035095 0.0070040 0.0078125
8 0.0018376 0.0017849 0.0036225 0.0039063
9 0.0007983 0.0009640 0.0017623 0.0019531

10 0.0004820 0.0004067 0.0008887 0.0009766
11 0.0002109 0.0002184 0.0004293 0.0004883
12 0.0000904 0.0000678 0.0001582 0.0002441
13 0.0000377 0.0000979 0.0001356 0.0001221
14 0.0000602 0.0000226 0.0000828 0.0000610
15 0.0000000 0.0000301 0.0000301 0.0000305
16 0.0000151 0.0000075 0.0000226 0.0000153
17 0.0000000 0.0000075 0.0000075 0.00000 i6
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3.7.6 Auto-Correlation Functions of the Sequences

The auto-correlations of the code sequences described in Section 3.7.2 have been comput-
ed for a code phase shift over the entire length of each of the co&- sequence. FIGURE 85.
is an example of the auto-correlation of the Code No. I sequence versus code phase shift,
for a shift between 0 and 500 with the correlation window equal to 512. The auto-correla-
tion function has a value of 1 at zero shift and near zero for all other shifts. The small val-
ue of correlation at non-zero code shift positions is highly desirable in order to have an
accurate synchronization of the code at the receiver for a spread spectrum communication
system. As a matter of fact, one would expect that the values of the correlation to approach
zero value for any non-zero code chip shift position when the correlation window is in-
creased to infinity. Indeed as is shown in FIGURE 86. the auto-correlation has much
smaller values for non-zero code chip shift positions with a correlation window of 16,384
chips as compared to that with a window of 512 chips.

FIGURE 87. and FIGURE 88.represent the auto-correlation of Code No. 3 generated by
the 4-DPLL system, for code phase shifts between zero and five hundred chips. FIGURE
87.has a correlation window of 512 and FIGURE 88. has a correlation window 16,384
code chip. They exhibit the same characteristics as those of the Code No.1 generated from
the 2-DPLL system.

The histograms of the auto-correlation for the entire code phase shift positions, excluding
the 0 shift point, have been obtained for all the code sequences given in Section 3.7.4.
Shown in FIGURE 89.and FIGURE 90. are the histograms for the Codes No. 1 and No. 3,
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FIGURE 85. The Auto-Correlation Function Vs. Code Phase Shift of the Code No. 1. [Correlation
window - 512 code chips
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FIGURE 86. The Auto-Correlation Function Vs Code Phase Shift of the COde No.I. (Correlation
Window - 16,384 code chips.

for correlation windows of 512, and 16,384 code chips. It can be seen that the mean value
of the correlation is approximately equal to zero, and that the variance decreases as the
correlation window is increased. It is also found that the absolute maximum value of the
correlation is less than 0.2 for the correlation window of 512 code chips and decreases to
less than 0.05 for the cases where the window is 16,384 code chips

Table 7 gives the standard deviation of the auto-correlation functions for all of the six (6)
code sequences listed in Section 3.7.4, for the correlation windows of 512, 2,048, and
16,384 code chips. It is seen that the standard deviation is inversely proportional to the
square-root of the correlation window.
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FIGURE 87. The Auto-Correlation Function Vs. Code Phase Shift of the Code No. 3. [Correlation
Window - 512 code chips.
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FIGURE 88. The Auto-Correlation Function Vs. Code Phase Shift of the Code No.3. [Correlation
Window - 16,384 code chips
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(a). Correlation Window - 512 Code Chips.
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(b). Correlation Window - 16,384 Code Chips.
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FIGURE 89. The HMstogram of the Auto-Correlation Function or the Code No. 1

October 18. 1991 122



(a). Correlation Window - 512 Code Chips.
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(b). Correlation Window - 16,384 Code Chips.
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FIGURE 90. .The Histogram of the Auto-Correlation of the Code No.3
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Table 7. Standard Deviation of the Auto-Correlation of the Code Sequences

(Excludes the zero phase shift point.)

Correlation Window (number of code chips)

Code 512 2,048 16,384

Code No. 1 4.41x10-2  2.23x10-2  8.35xl0"3

Code No. 2 4.42x10-2  2.23x10-2  8.39x10 3

Code No. 3 3.90x10"2  1.97x10"2  7.51x10"3

Code No. 4 4.45x10-2  2.24x10"2  7.57x10"3

Code No. 5 4.43x 10-2 2.23x 10-2 8.32x 10-3

Code No. 6 4.45x10-2  2.22x10-2  7.80x10-3

NOTE: The mean values for all the code are less than 2x10-4-

3.7.7 Cross-Correlation Between Two of The Code Sequences

The cross-correlations for several combinations of two of the six (6) code sequences listed
in Section 3.7.4 were computed. Specifically, the cross-correlations for the following com-
binations of two code sequences have been investigated.

Case 1: Cross-correlation between Codes No. I and No. 2.

Case 2: Cross-correlation between Codes No. 1 and No. 3.

Case 3: Cross-correlation between Codes No. 3 and No. 4.

Case 4: Cross-correlation between Codes No. 3 and No. 5.

Case 5: Cross-correlation between Codes No. 3 and No. 6.

Case 6: Cross-correlation between Codes No. 4 and No. 5.

Case 7: Cross-correlation between Codes No. 5 and No. 6.

The cross-correlation values at all code phase shift positions should, ideally, be very close
to zero if they are to be useful for CDMA communications. FIGURE 91. through FIGURE
93. show the cross-correlations vs. code phase shift for Cases I through 3 listed above,
where the code phase shift was from 0 to 500. It is seen that the absolute values of the
cross-correlation are small for all code chip shift positions, and they become smaller as the
correlation window is increased.
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(a). Correlation Window - 512 Code Chips.
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FIGURE 91. The CrowsCorrelation Function Vs. Code Phase Shift for the Code Sequences No.1 and
No.2. [Cas 1.1
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(a). Correlation Window - 512 Code Chips.
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FIGURE 92. The Cross-Correlation Function Vs. Code Phase Shift of the Code Sequences No. 1 and
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(a). Correlation Window - 512 Code Chips.
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(a). Correlation Window - 512 Code Chips.
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FIGURE 94. The Hstogram of the Cross-Correlation Function of the Code Sequences No.1 and No.2.
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(a). Correlation Window - 512 Code Chips.
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(b). Correlation Window - 16,384 Code Chips
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FIGURE 95. The Histogram of the Cross-Correlation Function of the Code Sequences No. 1 and No3.
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(a). Correlation Window - 512 Code Chips.
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FIGURE 96. The Histogram of the Cross-Correlation Function of the Code &Squences No. 3 and
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As stated above, one of the many requirements for a set of PN codes to be useful in a code
division multiple access (CDMA) communication system is that the cross-correlation be-
tween any two (2) codes of the set must remain small for all code shift positions. To de-
monstrate that such is the case for code sequences generated using the non-linear systems
of coupled DPLLs, the histograms for the cross-correlations of the seven cases listed
above have been obtained. They are shown in FIGURE 94. through FIGURE 96. It is seen
that the mean values of the cross-correlation are nearly zero for all cases, and the spread of
the histogram decreases as the correlation window is increased. Hence, one would expect
that the RMS value of the cross-correlation of any two code sequences approaches zero as
the correlation window is extended to infinity. It is also seen that these histograms have re-
markably similar characteristics for all cases investigated.

Table 8 gives the standard deviations of the cross-correlations of the six (6) cases listed at
the beginning of this section. Again, it is seen that the standard deviation is inversely pro-
portional to the square-root of the correlation window.

Table 8. The Standard Deviation of the Cross-Correlations of Two Code Sequences

Correlation Window (number of chips)

Codes 512 2,048 16,384

Codes No. 1 and No. 2 6.85x 10" 3.44x10"3  2.46x10"3

Codes No. I and No. 3 4.40x10"2  2.21x10"2  7.80x10"3

Codes No. 3 and No. 4 7.00x 10"3 3.75x10" 3  2.00x 10-3

Codes No. 3 and No. 5 4.41x10-2  2.24x10-2  8.33x10-3

Codes No. 3 and No. 6 4.41x 10-2 2.24x 10"2 8.35x 10"3

Codes No. 4 and No. 5 6.82x10"3  3.43x10"3  1.29x10"3

Codes No. 5 and No. 6 6.82x 10-3  3.34x 10-3  1.28x 10-3

NOTE: The mean values of the cross-correlations for all cases are less than 10-4

3.7.8 Acquisition Behavior of the Code Sequences

Simulations of the clock and code phase acquisitions under noisy conditions have been
performed using the Monte Carlo method. In the simulation, the code phases of the re-
ceived code sequence and the regenerated sequence at the receiver are initially set to be off
by an arbitrary number of code chips, and the clock phases of the transmitter and the re-
ceiver are off by as much as one-half of the clock period.

The acquisition algorithm described in Section 3.7.3 is used in the simulation. During the
acquisition phase the transmitted sequence of a fixed number code chips is continuously
repeated. During the first pass of attempting to establish the required synchronizations, the
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clock phase of the receiver is gradually stepped by an increment equal to a small fraction
of the clock period. For each of the clock phases the code sequence generated by the re-
ceiver was correlated with the received sequence from the transmitter simultaneously for
all the different code phases, using as many correlators as there were code chips to be cor-
related. The code phase and clock phase synchronizations were declared to have been
achieved whenever the correlation peak at a given clock phase position exceeded 0.99. In
the case where the maximum value of the correlation peak remained less than 0.99 after
the clock phase has been shifted for one clock period, the second phase of the acquisition
process was initiated. This was done by searching the clock phase with an time increment
equal to one-tenth of the original increment. The search was performed in the vicinity of
the clock phase position at which the maximum value of a correlation peak had been ob-
served during the first phase of the search. It has been found that synchronization can be
achieved within the first three (3) passes with an input signal-to-noise ration (SNR) of -12
dB or higher.

Given below are correlation peaks versus the clock phase errors during the processes of
code phase and clock phase acquisitions. FIGURE 97. is for the Code No. 1 using a corre-
lation window of 512 code chips. Part a is for code generated from the output of the sec-
ond DPLL and part b is for the code generated from the output of the first DPLL. The code
sequence is acquired in one pass for both cases. FIGURE 98. and FIGURE 99.are for the
same case except that the correlation window is 1,024 code chips. The codes generated
from the output of the second as well as the first DPLL are acquired in two passes. The
reason multiple passes are needed to acquire the codes is that a slight off-set in the clock
phase will cause many code chip mismatches when correlation window is widened.
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(a). Code Generated From the Output of the Second DPLL.
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(b). Code Generated From the Output of the First DPLL.
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FIGURE 97. Correlation Peak Vs. Clock Phase Error During the Acquisition of the Code No.1 with
correlation window of 512 code chips.
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(a). Code Generated From the Output of the Second DPLL - First Pass.
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(b). Code Generated From the Output of the Second DPLL - Second Pass.
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FIGURE 98. The Correlation Peak Vs. Clock Phase Error During the Acquisition or the Code No. I
With Correlation Window of 1,024 Code Chips
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(a). Code Generated From the Output of the First DPLL - First pass.
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(b). Code Generated From the Output of the First DPLL - Second Pass.
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FIGURE 100. is a graph of the con-elation peaks versus clock phase error during the ac-
quisition of the Code No. 3 using a correlation window of 512 code chips. FIGURE
101.through FIGURE 103. depict the same thing with the correlation window of 1,024
code chips. Again, it is seen that multiple passes are required to acquire the codes when
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the correlation window is 1,024 code chips, while one single pass is needed for the corre-

lation window of 512 code chips.

(a). Code Generated From the Output of the Fourth DPLL.
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(b). Code Generated From the Output of the Third DPLL.
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FIGURE 100. Correlation Peak Vs. Clock Phase Error During the Acquisition of the Code No. 3 With
Correlation Window of 512 Code Chips.
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(a.). Code Generated From the Output of the Fourth DPLL - First Pass.
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(b). Code Generated From the Output of the Fourth DPLL - Second Pass.
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FIGURE 101. The Correlation Peak Vs. Clock Phase Error During the Acquisition of the Code No. 3
Using Correlation Window of 1,024 Code Chips
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(a). Code generated From the Output of the Third DPLL - First Pass.
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(b.). Code Generated From the Output of the Third DPLL - Second Pass.
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FIGURE 102. The Correlation Peak Vs. Clock Phase Error During the Acquisition of the Code No. 3

Using Correlation Window of 1,024 Code Chips)
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FIGURE 103. The Correlation Peak Vs. Clock Phase Error During the Ac uisition of the Code No. 3
Using Correlation Window of 1,024 Code Chips Code Generated From gte Output of the Third

DPLL - Third Pass.

One Monte Carlo simulation was done to simulate the acquisition of a code sequence un-
der noisy conditions. It would be necessary to carry out several hundred simulations in or-
der to obtain the statistics (mean values and variances) of the number of passes required to
acquire each of the codes starting from any arbitrary code phase off-set and clock phase
error.

3.7.9 Conclusion

Code sequences generated from the 2-DPLL and 4-DPLL non-linear systems have been
investigated to determine if they have the desired properties as outlined in Section 3.7.2 It
has been found that the six code sequences investigated have all four (4) of the properties
required. In addition, it has been found that those code sequences generated from the out-
put of the DPLL having positive Lyapunov exponent have only one positive auto-correla-
tion peak. This is a highly desirable property.

It has been found that code and clock phase synchronization can be achieved within one to
three passes when the initial clock timing search increment is less than 1/100 of the clock
period, and the input signal-to-noise ratio is equal to or higher than - 12 dB.

A larger collection of sequences generated using the system of FIGURE 67., with different
numbers of DPLL's in the system and with different coupling coefficients matrices, need
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to be studied so as to be certain that the codes sequences generated have the desired prop-
erties as given in Section 2.0. The question of the periodicities of these sequences must be
addressed either through theoretical investigation or simulations. Ideally, the periods of
the sequences generated by the system would be infinite. All the simulations were done
using a digital computer with double precision arithmetic operations. The effects of using
a shorter word length in the arithmetic operations on the properties of sequences being
studied require further investigation.

3.7.10 References

1. S.W. Golomb. Shift Register Sequences, Holden-Day, Inc. 1967

2. J.K. Holmes, Coherent spread Spectrum Systems, John Wiley & Sons, 1982
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3.8 Analogue Phase Lock Loop

This section contains a review of the work done on the analogue phase lock loop.

3.8.1 Overview

Phase locked loops (PLLs) are useful for phase and frequency, synchronization. An inde-
pendent study at Ford Aerospace (now LORAL Aerospace) explored possibilities for high
speed data recovery using an analogue phase lock loop which contained a hard limiter1 . A
linear analysis indicated that the such a loop showed great promise. However, since the
behavior of a phase lock loop with a hard limiter in it was not well understood it was de-
cided that an analysis of a system containing a hard limiter should be performed using the
methods of non linear dynamics. In this section we present the results of that investigation.

3.8.2 System description

The system studied was a second order analogue phase lock loop2 with the addition of an
ideal limiter. The systems behavior was investigated for three different types of input; FM,
BPSK, and square waves. The FM and BPSK assumed a sinusoidal carrier. FIGURE 104.
is a representation of the loop.

Ei is the phase of the input signal, 0o is the phase of the VCO output, h is the output of the
phase detector(PD). The output of the hard limiter is ul and the output of the filter is uf.
The phase difference is given by:

D (t) Oi -Oo 00(61)

The output of the limiter is either -I if h5 <0 or +1 ifh > 0

The output of the filter is governed by its transfer function which is

1+ ST2

1 + sT 1 (62)

where s is the operational variable and TI and T2 characterize the filter. The output phase of
the VCO is given by

d8o
d@0 j) + Kuf (63)
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where oo is the free running frequency of the VCO and K is its gain.

Oi h

PD ' LIMITER

UlO~o

LOW
VCO Uf PASS

FILTER

FIGURE 104. Analogue Phase Lock Loop

The phase detector is taken as an ideal multiplier, so if the wave form of the inputs is sinu-
soidal the waveform of the output is also sinusoidal, and if the inputs are square waves the
output is a symmetrical triangle wave.

3.8.3 Mathematical Models

Different Mathematical models were used to represent the system depending on the form
of the input. It was possible however, to derive a differential equation which provided a
general description of the system.

The output of the filter can be written

U f = fxu! (64)

where f is the response function of the filter and the x indicates convolution. It is assumed
that the above equation is applied only for the time that the limiter remains in a given
state; i.e. when the output of the limiter is a constant. This constant, which shall be desig-
nated by a, is either +1 or -1 depending on the sign of h, Each time the limiter switches
states, we note the values of all relevant parameters, and use these as the initial conditions
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for solving eq(64) or its equivalent for the next period that the limiter remains in the same
state. Eq(64)is equivalent to

duf

a-i +UfTj = a (65)

The term involving T2 vanishes because of the constant limiter output. Substituting for uf
from eq(63) and then substituting for the phase of the VCO output from eq(61) results in a
second order differential equation in the phase difference 4D. Rewriting this equation in the
standard form of two coupled first order equations we have

d(I
t = g (66)

dg g d2Gi+ 1-d~i
d-+g - + j- '- -(to°+aK)[Il (67)

dt Ti t2 LTdt 0 L Ti

3.8.4 Frequency Modulation

For the case of FM, the inputs to the phase detector are sinusoids and so the output of the
phase detector is a sinusoid. For FM Oi is given as follows

deidE F o M sin ((omt) (68)

where (oi is the carrier frequency of the incoming signal, (am is the modulation frequency
and M is the modulation index. Taking the second derivative and substituting into eq(67)
we get

dg~ g _ [1M]n~dg + 1- A Msin(6 t) + (So) - aK)] 1 +MomCos(1Omt) (69)

Where

1 0

Integrating eq(69) we get

t

g = Msin (()mt) + (8(, - aK) + Cle 1 (70)
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where C1 is a constant of integration. Substituting for g in eq(66) and integrating we ob-
tain the following equation for 4).

t

M 
+ 2

where C2 is a constant of integration. The two constants of integration are determined
when the limiter switches. At the point at which input voltage to the limiter (h) switches
sign the time, phase difference, and derivative of the phase difference (g) are noted and
then the integration constants for the next period that h keeps the same sign are determined
from these quantities. The form of h is

h = cos (O)

the term proportional to the sum term of the input phases

E)i + Eo

is ignored since the low pass filter rejects these high frequencies. Thus the a in the above
equations is determined by the cosine of the phase difference.

3.8.5 BPSK

For BPSK the input phase is of the form

Gi = 6)it+

where X is the phase constant which takes on the values of either 0 or nt. For the purpose
of simulating the behavior of the system the value of X is selected randomly every signal-
ling period. The voltage in to the phase detector is of the form

[cos ~li2

Thus the output of the phase detector h is given as

1
h = I [2cos ( - 4)) + cos (E + (D) (72)

where (D is the phase difference as before, and the terms involving the sum of the input
phase and the output phase of the VCO have been discarded because these frequencies
would be rejected by the low pass filter.

If we now substitute in eq(67) for ®i we obtain the following differential equations for the
phase difference and its derivative:
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d4
It -g (73)

dg 1 1dg- + I = I- (ao aK) (74)
It T T 1 i 0-

where the symbols have the same meaning as they did in the FM case; a - +1 ifh > 0 and
a - -1 if h !5 0. As before we integrate during a period when the output of the limiter is
constant. (The times when the output of the limiter changes depend in part on the signal-
ling rate.)

The solution to the above equations is

D = c+ (toi-)o0-aK) (t-TI) +bexp((to-t)/l) (75)

g = (0)i-%(o-aK) +[-b]exp((to-t)/Tl) (76)

where to is the time when the limiter switched sign and the constants c and b are deter-
mined from the values of the phase and its derivative at the time the switch occurs.

3.8.6 Square Waves

Tetsuro and Chua found that a second order phase lock loop (without a limiter) with
square waves as input behaved differently than sinusoids and gave chaotic behavior.3 The
presence of the hard limiter modifies the behavior of the system to so that it is the same for
square waves and for sinusoids. This happens because if the inputs to an ideal multiplier
are square waves the output is a symmetric

triangular wave. As can be seen from FIGURE 105 a symmetric triangular wave and a
sine wave are positive and negative for the same periods of time (assuming of course that
they have the same period). Since the limiter responds only to the sign of the wave form
input to it and not the shape the square waves will behave the same way a sine does.
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FIGURE 105 Comparison of sine and triangle waves

3.8.7 Numerical Simulations

In order to study the behavior of the PLL for the different waveforms, computer programs
were written in C which ran on a SUN SPARC station 1 under UNIX. Each of the wave
forms studied required its own set of programs. However, the programs were very similar,
(the major difference between them being the criteria for the limiter switching states) and
so will be described together.

The first step in the study was to determine when the limiter switched states. This was
done in a computer program which found when the function h, described in paragraphs
1.2.1 and 1.2.2, went to zero. The computer program used an algorithm based on a simple
enclosur. method4. The inputs to this program were the values of the filter parameters, the
difference between the VCO free running frequency and carrier frequency of the incoming
wave, the gain of the VCO, the initial values of the phase difference and its derivative, the
initial time, and the total time over which the system was to run. The program for the FM
simulation also required the modulation index and the modulation frequency. The BPSK
simulation required the signalling period, and contained a pseudo random number genera-
tor from the C library. The outputs of the zero finding program, were the phases, deriva-
tives of the phases and the times when the limiter switched states; the BPSK program
output also contained the values of the phase constant at the time of the limiters switching
states.

The next step was to find the values of the phase, and the time derivative of the phase at

sample times between the switching times of the limiter. (The so called trajectories of the
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system.) This program solved the equations for the phase and its derivative given in para-
graphs 3.8.4 and 3.8.5. The inputs to the program were the same as the inputs to the zero
crossing programs, the outputs from that program, and the time interval between the sam-
ple points. The outputs were the sample times, phase and the derivative of the phase at the
sample times. The output files were such that phase space diagrams and configuration
space diagrams could be generated from them.

A specialized form of the above program was used to generate surfaces of section5 . Here
the sampling time interval was fixed by the inverse of the frequency in the FM case, and
by the inverse of the signalling rate in the BPSK case.

It was found that, just as in the linearized analysis of PLL, one of the crucial parameters
governing the behavior of the PLL was the ratio of the VCO amplification K to the differ-
ence (ai-Wo.(=( &0). A program was written which calculated the surfaces of section and
recorded them in a file as functions of this ratio. The file was then used to create a bifurca-
tion plot.

One of the traits of a non-linear system which provides an indication of whether the sys-
tem is in a chaotic mode, is the power spectrum of the system3 . A program was written
which calculated the power spectrum of a time series. The inputs where phase and time as
gotten from the previously mentioned programs, and the output was the amplitude of the
phase squared at discrete frequencies.

Finally two programs were written to calculate the Liapunov exponentials 5 6 for two ta-
jectories of the system which began with slightly different initial conditions. The first pro-
gram calculated the distances between the two trajectories and then did a least squares fit
to an exponential, the second calculated the exponential directly using a renormalizing al-
gorithm suggested in reference 5. The programs took as input the phase versus time out-
puts of the trajectory programs and gave as output the Liapunov exponent. The second
program gave a time sequence of the exponential so that it was possible to see whether a
"steady state" had been reached.

The next paragraph describes some of the results from the use of these programs.

3.8.8 Results and Conclusions

This subsection is divided into two parts. The first part presents some of the results for FM
and conclusions based on these results. The second part presents some of the results for
BPSK. The investigation of BPSK is not yet concluded.

FM

In all of the figures discussed in this section the initial time and phase derivative were set
equal to zero and the initial phase was set equal to 1 The filter constant T1 was taken as.01
seconds, the modulation index as 10 and the frequency of modulation as 1000 Hz. These
values were selected, after many runs with different values, as giving characteristic results
for the system.
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FIGURE 106. is a plot of ) vs. time for the system with K/(80) = 10. FIGURE 107. is

a phase plot for the same value of the ratio.

1.00

0.00

• 1 .00

-2.00

-3.I I00.00 0.05 0.10 0.15 0.20

time (secs)

FIGURE 106. Phi vs. time for FM with K/(8(o) = 10

FIGURE 106. shows that the phase rapidly converges to an equilibrium value. The phase
plot has the appearance of an (a limit cycle' suggesting that the system settles into a stable,
non-chaotic mode of operation. This result is in agreement with the usual linear analysis of
PLLs. Further confirmation of this behavior is provided by the power spectrum (FIGURE
108)and the surface of section (FIGURE 109.). Finally the leading Liapunov exponent for
K/ (&Sa) - 10 is < 0 indicating stable, non-chaotic behavior.
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FIGURE 110. is a bifurcation diagram of the equilibrium values of phi, as calculated from
a surface of section, as a function of the ratio K/ (8a) .The upper diagram is a magnified
version of the lower diagram. Note the differences in the values on the axis. From the dia-
gram it can be seen that the equilibrium phase goes from having many values to fewer and
fewer values as the ratio increases.The structure of the diagram is complex for values of
the ratio between I and 2. There are many more equilibrium values between K/(&O) - 1
and 1.3, then for values between 1.3 and 1.4 the structure seems to simplify, become more
complicated between 1.4 and 1.5, settle into two values between 1.5 and 1.7 then go to one
value then back to two about 1.78 and back to I for ratios greater than about 1.82. So it
would seem that the system goes from being complex (possibly chaotic) for low values of
the ratio and that stabilizes into a non chaotic mode for ratios greater than 1.82.

To see if the behavior of the system is "chaotic" for values of the ratio less than 1.3, the
behavior was examined for the ratio equal to 1.24. FIGURE 111. is a plot of the phase vs.
time for this ratio and FIGURE 112. is phase space plot for the same ratio.
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Comparing them to the plots for K/(&O)-10 we see that they are much more complex.
There does not appear to be a limit cycle in the phase plot though there appears to be a
many period set of limit cycles. The power spectrum (FIGURE 113) and the surface of
section (FIGURE 114.) also appear quite complex- indicating possible chaos. A calcula-
tion of the leading Liapunov exponent gives a number greater than zero. Thus all the indi-
cations are that the behavior of the system for K/(&O)- 1.24 is chaotic. Since this choice
of the ratio was representative of the values of the ratio between I and 1.3 we can con-
clude that the system behaves chaotically in this range.

The study of the PLL with an FM input has shown that:

a) There is a region of chaotic behavior. This region, however, occurs in a range of
parameters where the loop is not usually operated.

b) In the region of parameter values where the PLL is usually operated the behav-
ior is non chaotic and stable. Further the non-linear analysis agrees with the linear analy-
sis.
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BPSK

The study of the PLL with a BPSK input is not yet complete. The preliminary results are
presented here. Again as in the FM case the study was primarily conducted by fixing all
the parameters except the ratio K/(&o). In all of the figures discussed in this section the
initial time, the initial phase constant, and initial phase derivative were set equal to zero
and the initial phase was set equal to 1, The filter constant T I was taken as.01 seconds, sig-
nal rate as 100 Hz, and the input carrier frequency as 1000 Hz.

FIGURE 115. is a plot of phase versus time for K/(&o) - 10. As can be seen from the fig-
ure the phase is increasing linearly and does not seem to be approaching an equilibrium
value. This was true for all values of K/(&,)) studied. The phase plot in FIGURE 116. is a
"polar plot". It is quite lovely and quite complex. Further work needs to be done in order
to understand how to interpret it.MTe power spectrum in FIGURE 117. shows no features
indicating chaos, nor any discrete frequencies. Finally the bifurcation diagram in FIGURE
I1I8.shows more and more complex structure as the ratio of K/(&o) increases. Calculations
of the leading Liapunov exponent were inconclusive.

Because of the rich phase diagram there would seem to be interesting structures to be in-
vestigated in the case of a PPL with a BPSK input. A part of the effort for the next year
will be devoted to this investigation
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3.9 Synchronization of Digital Coupled Oscillators

3.9.1 INTRODUCTION
Coupled oscillators are common in many scientific areas,

including communications, optics, engineering, chemical
reactions, biology, etc. This type of system has attracted
much attention (see, for example, references 1-4 and
references therein), beginning with Winfree 5 who discovered
that a class of coupled oscillators with different internal
frequencies suddenly synchronize to a common frequency when
the coupling between oscillators exceeds a critical value.
Winfree and others suggested that these models could give
insight into the behavior of coupled biological rhythms, such
as swarms of fireflies that flash in synchrony, synchronous
firing of cardiac pacemaker cells, groups of women whose
menstrual cycles become synchronized, etc. 5

The synchronization of oscillators has important practical
applications in electronic systems. For example, in the design
of microwave systems the power of many devices may be combined
through synchronization to achieve power that increases
quadratically with the number of oscillators. In this case the
oscillators must have not only the same frequency, but should
also be in phase. Similar needs are found in electrical power
generation, Josephson junction arrays, etc. Another important
application of synchronization is related to a network of
clocks distributed geographically in different locations,
where it is necessary to have the same time for all clocks.
For this type of application, electronic devices such as phase

6locked loops (PLL) have been studied
Coupled digital phase locked loops (DPLL's) can also be used
as a synchronizing device in a network of elements. Gil and
Gupta 7 showed that a single first order DPLL is governed by a
nonlinear difference equation, which displays regular and
chaotic behavior. We have observed similar features in two or
more coupled DPLL's and the boundaries between synchronized
and chaotic behavior have been determined8.
In this section we study networks of coupled DPLL's with and
without variability in their component elements. Our
attention is concentrated on three types of geometries,
namely, ring, double ring and global coupling. The paper is
organized as follows: In section 3.9.2 we briefly review the
basic properties of a digital phase locked loop, and of two
coupled DPLL's. In section 3.9.3 we develop the formalism for
many interconnected devices in the three configurations
mentioned above. Section 3.9.4 gives the conclusions and
discussions of the problems considered.
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3.9.2 ONE AND TWO LOOPS
A single, first order, digital phase locked loop consists of
a sample and hold (SH) and a variable frequency oscillator
(VFO) as shown in FIGURE 119. The VFO runs with an internal
frequency 0 in the absence of an input signal. Its output is
given by v(t)=A sinot, where ( is its instantaneous
frequency. When v(t)=O with a positive slope, the VFO sends a
signal to the SH and a sample v(tk) is taken from the input
signal. The frequency of the VFO at this instant is adjusted
according to

('= Q+bv(tk) (77)

As a consequence there is possibility of locked behavior when
the VFO samples at a constant phase value.
The dynamical behavior of a single DPLL, governed by eq( 77),
was studied in detail in . It was shown that when the input
signal of a single loop is a sinusoid, then the time evolution
of the phase difference between input signal and the VFO
output is described by a circle map. This type of map has been
studied extensively in the past' . It exhibits periodic,
quasiperiodic and chaotic behavior.

SH

_J-1-_

FIGURE 119. Schematic representation of a single first order phase locked loop

We will be concerned in this paper with coupled DPLL's, where
the input of a loop is given by a combination of the outputs
of the other loops. Each loop i has its own set of parameters
Qi and bi. We start by analyzing two coupled DPLL's where the
input to one loop is the output of the other loop, and vice-
versa. This system was described in sections 3.1 and 3.2. Here
we review some of the main features and report some different
results for the coupled loops. A schematic representation of
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the system is shown in FIGURE 120. In the dynamical evolution,
every time that one of the VFO signals crosses zero with a
positive slope this oscillator sends a signal to its SH and a
sample is taken from the output of the other loop. The loop
that samples switches its frequency to a new value determined
by eq( 77).

FIGURE 120. Schematic representation of two self synchronized DPLLs

The equations that govern the dynamics of the loops are

01 t= a-1 +blA 2 sin4 2 ,( 1l 0 (78a)

(t2 = Q 2 +b 2 Alsin4 1 , )2  0 (78b)

The gain bi of the VFO appears always multiplied by the
amplitude Aj (j~i) of the'input signal. Thus without loss of
generality we can take Ai -1. Also, dividing both equations
by one of the center frequencies, say L2, the parameters and
variables become dimensionless. We keep the same notation and
simply take 02 - 1, having in mind that now we are working
with renormalized dimensionless quantities. In this way, we
have

10 = 1 +b I sin 2,41 = 0 (79a)

(A'2 = 1 +b 2 siný,' 2 = 0 (79b)
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We consider that the gains are positively defined. Since the
frequencies of these time discrete systems are also positive
we must have b1• -11 and b2 •• 1.
When the loops synchronize to a common frequency os we have
o"2 w= s and *2(C1 - 0)- - 1(t2-=0)2 0. Putting this into
eq( 79a)and eq( 79b), we obtain

- /bl + 1/b 2

s 1/b 1 + 1/b 2  (80)

and

sinA4 (81)bl + b2(s

From eq( 81) one sees that the synchronization is possible
only if

b1 +b 2 ŽjL1 - 11 (82)

If b1 +b 2 is smaller than the critical value determined by eq(
82), then the synchronization does not occur, and
quasiperiodic behavior is observed.
We show in FIGURE 121. the bifurcation diagram for a coupled
loop system where b= b, - b2 and i.-1. 2 . The quantity plotted
is o0. vs. b. As b increases we observe a quasiperiodic regime,
which ends at the point determined by eq( 82), which is
followed by a synchronized regime, bifurcations, and chaos.
In our numerical calculations we evolve the system according
to the algorithm given in reference 9.
In reference 8 we investigated the system where the center
frequencies of both loops were identical, i.e., '11= !2 !a
In that case, from eq( 80) and eq( 81) we obtain that in the
synchronized state 0)=, and A•=0. Through a linear stability
analysis we showed that this state is stable for 0 < bl+ b2 <
Q/n. When the couplings, i.e., the gains, increase beyond this
value the system passes through a sequence of period doubling
bifurcations, governed by Feigenbaum'siI exponents, followed
by a chaotic regime
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3.9.3 MANY COUPLED OSCILLATORS
We now turn our attention to populations of many coupled
oscillators. In such a system, every time that a VFO signal

crosses zero with a positive slope the SH in that loop takes
a sample from combined outputs of the other VFO's to which it
is connected. The input to the ith sampler is.assumed to be
given by a linear combination of the VFO outputs of the other

loops, that is,

N

The matrix A-[a~ij is called the interconnection matrix for
the system. If loop i receives input frcm loop j then a1 j- 1.
otherwise a1 j - 0. We consider ai - 0.
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The value s(ti) is used to adjust the frequency of the ith VFO
according to

(Of = .+ (bi/ni') s (ti) (84)
where

N
ni Z aij

J=I

is the number of loops from which loop i receives input.
In the synchronized state all the loops run with the same
frequency 0'i = (0 From eq( 83) and eq( 84) we obtain

bi

(s = Q + n-D ij sin ( -j)'Oi = 0 (85)
i j

Using eq( 85) and summing over all the loops, we have

ii E I j j sn( j)0)( 
6

If between two loops that are connected the communication
exists in both directions, i.e, if aij = 1 then aji = 1, then
the r.h.s. of eq( 86) vanishes. This happens because Oj( 4 )i =0)
= -ýi(j = 0) and sin(.) is an odd function. Thus the
synchronization frequency can easily be obtained from ( 86)
as a weighted average of the Oi's,

aini

1! (87)

Sbin

This expression for the synchronization frequency remain3
unchanged if sin(.) is replaced by any odd periodic funct-on.
We now study two kinds of systems:
Oscillators with identical center frequencies
If all the oscillators have the same center frequency Qi - 0,
then from eq( 87) one obtains ws-Q, as expected. As discussed
in the previous paragraphs we can make Q =1 without loss of
generality. Moreover, a solution with all the phase
differences being zero satisfies eq( 85) for any configura-
tion. These results are independent of the gains (bi's) and
of the connection numbers (ni's).
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Our numerical calculations are concentrated on the three basic
types of configurations shown in FIGURE 122., that is, (a)
ring, (b) double ring, and (c) global coupling. We observe
that the oscillators in these geometries synchroniL. to a
common frequency over a range of the parameter space.

(a) (b)

i4

(C)

FIGURE 122. Schematic representation for (a) ring, (b) double ring, (c) global coupling
configurations for N -5

For the ring configuration the communication between loops is
only in one direction. Therefore the derivation for the center
frequency performed above is not valid for this system. We
observe numerically that the synchronizing frequency for the
ring configuration is also Q, as expected. In this geometry
the sum on the r.h.s. of eq( 85) has only one term. From that,
one can derive immediately that the phase differences between
oscillators will be zero. In the double ring and global
coupling configurations, the communication between loops is
in two directions, which satisfies the conditions for the
derivation of eq( 87). In these two cases, we also find that
the synchronization frequency is Q and there is no phase
difference between loops.
Although the attractor for the synchronized state is the same
for all the configurations, the transient behavior strongly
depends on the geometry of the system. To study the transient
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to the locked state we initiate the system with all loops
having the same instantaneous frequency, which is taken to be
equal to Q. We choose the initial phases to be zero, with the
exception of the phase of one of the loops, say loop 1. We
take the initial phase of this loop to be given by a random
number between 0 and 1. We calculate the number of sampling
times n of loop 1 that brings the system to the final attractor
with a given accuracy £, that is, when IQ'-Isj • c-
We did simulations for 200 different initial conditi3ns for
the phase of loop 1, and calculated the average number of
sampling times ii of loop 1 that brings the system to the final
attractor. The gains of the loops were fixed to bi=0.1. The
results are displayed in FIGURE 123. a for a system of 10
loops. The transient is the longest for the ring configuration
and the shortest for the global coupling.
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FIGURE 123. a Average number of Iterations for the transient that take sloopl to the final attractor
for ring (square), double ring (triangle) and global coupling (cirle) for b -. 1 vs. c for N-10

Moreover, n is well approximated by the equation
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S= AlogE + B (88)

eq( 88) fails in the limit £ - 1. We also study the transient
as a function of the size of the system. We find that, for a
given configuration, the average number 'E of iterations per
loop for the transient is approximately constant for N
sufficiently large. Thus, the total number of samplings
increases linearly with the size of the system. The results
of ni vs. N for the double ring, and global coupling
configurations are shown in FIGURE 123. b.
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FIGURE 123. b Average number of Iterations for the transient that take sloopl to the final attractor
for ring (square), double ring (triangle) and global coupling (circle) for b -. 1 vs. number of loops ror c

-. 00001

The state where the loops synchronize to a common frequency
is stable for 0 < bi < b*. When bi is larger than b* bifur-
cations and chaos appears. In a system with the same gain for
all loops and N5 200 we observe the following: For the ring
configuration the first bifurcation occurs always at b*=(C/
for any number of loops N. This result can be easy derived
analytically for N-2, by performing a linear stability
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analysis8 . As N is increased we observe from the numerical
simulations that this value remains the same. Just beyond the
critical value b*, there appears a periodic regime whose
period is given by N2 . This period refers to the number of
samplings that makes the system return to a given state in
frequency as well as in phase difference. By further
increasing the gain more complex bifurcations occur which are
followed by chaos.
For a double ring system the critical gain where the first
bifurcation occurs is also given by b*=Lhr, for N large. If
N is odd and small, b* differs from this value, converging to
it as the size of the system increases, as shown in FIGURE
124.. As the gain increases beyond this critical value,
there appears a bifurcation with period 2N, where more than
one basin of attraction is found for N sufficiently large.
This bifurcation is followed by more complex bifurcations and
then by a chaotic regime.

0.4

03 00 0 o 0 0 0
0

0

0.2

0.1

0,I I

1 101 102

N

FIGURE 124. Critical value b* which marks the upper border of stability for the synchronized regime
In a double ring (triangle) and global coupling (circle)

In a global coupling configuration we find numerically that
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b* converges for large N to b*=2./ln , as seen in FIGURE 124.
The attractor that follows the synchronized state has period
2N and has multiple basins of attraction, for N sufficiently
large. Beyond this bifurcation more complex bifurcations
appear as the gain is increased, which are followed by chaos.
Oscillators with different internal frequencies

We now consider populations of DPLL's which have different
internal frequencies. In this case, synchronization to a
common frequency occurs over a range of the parameter space.
The transition to the synchronized state is similar to the
transition that occurs in the oscillators studied in 1-4
which are governed by ODE's. For configurations where the
communication between loops that are connected is in both
directions, the synchronizing frequency is given by ( 87).
Now, a phase difference between loops will occur at the
synchronized state.
The synchronization is possible only if the gains bi are large
enough. Considering that Isin(.)I 1 1, we obtain from ( 85)

S i - i (89)

that is, for any i the relation bi Ž I s-Qil must be satisfied.
Consider the case where the gains are the same for all loops,
i.e., bi= b. We denote by bc the critical value of b where
the systems synchronize. From the above expressions, we find
that the lower bound for bc is given by b=max(I(as-jI). This
expression holds for any configuration. As the gain b
increases there will appear a bifurcation at a critical value
b*. The numerical calculations show that the critical value
may be slightly greater than the b* for the corresponding
configuration with all the loops having the same r'enter
frequency. If the center frequencies are distributed over a
large interval then synchronization may not be achieved.
Suppose that they are distributed in the interval 1-A f2i 5
1+A. If A is larger than a critical value for which bc = b*,
then the synchronized state cannot occur.
We did numerical simulations for the ring, double ring and
global coupling geometries with Q randomly distributed in the
interval [0.9;1.1], the gains being the same for all loops.
First we calculated the transient to the locked state in the
same way as we did for the system with identical center
frequencies. The results for a system of N=10 and b-0.16 are
shown in FIGURE 125. as a function of the accuracy c.Here too
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the transient -5 is described by ( 88). As the gain increases
the locked state becomes unstable and bifurcations are
observed, which are followed by chaos.

500

375 0

0

250

A0
125 A

A

10-041-110 -1 2 0-1 10 1 0 -1110- 10- 10-7 10-o 1- 10- 10-1

FIGURE 125. Average number of Iterations for the transient that takes loop 1 to the final attractor for
ring (square), double ring (triangle) and global coupling (circle for b -0.16 vs. c with N -10

3.9A CONCLUSIONS
We have shown that populations of nonuniformily sampled

digital phase locked loops synchronize with a common frequency
over a range of parameters. The synchronized frequency can be
obtained analytically for configurations where the coupling
between the connected loops occurs in both directions. In
common with other coupled oscillator systems, if the spread
in frequencies is not too large, there are transitions with
increasing coupling from quasiperiodic to locked state and
finally to chaos.
We studied the cases where the center frequencies are
identical for all loops, and when they are spread. We found
for both cases that the transient to the synchronized state
and the parameter range where it is stable depend on the

October 18. 191 169



configuration of the system, with the time to lock improving
with the number of couplings for a fixed number of coupled
devices N. The time t, lock increases linearly with N for
small N and approaches a constant value for large N. Among the
geometries studied, global coupling showed the shortest
transient to the locked state. This configuration also has the
largest parameter region where the synchronization is
possible.
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